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PREFACE 

The Joint Staff and the Office of the Secretary of Defense consider long-range force 
structure issues. Such issues have become more pressing following the end of the 
Cold War, because a wider range of scenarios in diverse parts of the world compli- 
cates logistics planning. To aid in resolving a variety of logistics-planning issues, 
RAND conducted a four-task project entitled "Achieving Maximum Effectiveness 
from Available Joint/Combined Logistics Resources." The research was sponsored 
by the Logistics Directorate of the Joint Staff (JS/J-4) and was conducted in the 
Acquisition and Technology Policy Center of RAND's National Defense Research 
Institute, a federally funded research and development center sponsored by the 
Office of the Secretary of Defense, the Joint Staff, and the defense agencies. 

The first two tasks were to survey the needs and opportunities for responsive logistics 
and operations command and communication, and to conceive and evaluate en- 
hancements for conventional ammunition. They are documented in the following 
reports: 

S. C. Moore, J. Stucker, and J. Schänk, Wartime Roles and Capabilities for the 
Unified Logistic Staffs, RAND, R-3716-JCS, February 1989. 

J. Schänk, et al., Enhancing Joint Capabilities in Theater Ammunition Manage- 
ment, RAND, R-3789-JS, 1991. 

The objective of the third task was to understand the capabilities of the major com- 
puterized models and databases used for analyzing strategic mobility questions, to 
survey the various uses of strategic mobility models, to evaluate the attributes and 
limitations of the major existing models, and to determine whether another type of 
computer model would serve the directorate's needs better than does its current 
model. This task is documented in the following report: 

J. Schänk, et al., A Review of Strategic Mobility Models and Analysis, RAND, 
R-3926, 1991. 

In the third task, we found several shortcomings with existing mobility models, es- 
pecially in their application to problems of transportation resource requirements. 
We recommended that the JS/J-4 pursue the development of new modeling capabil- 
ities and suggested that mathematical programming and a new knowledge-based 
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modeling environment being developed under Advanced Research Projects Agency 
sponsorship would be promising technologies for these new analysis capabilities. 

This report documents the results of the fourth task, which was aimed at developing 
and demonstrating a mathematical programming prototype designed specifically for 
transportation requirements analysis. Another report describing results of this phase 
of the research is 

J. Schänk, et al., New Capabilities for Strategic Mobility Analysis:   Executive 
Summary, RAND, MR-294-JS, 1994. 

This document should interest both policymakers and analysts in the strategic mo- 
bility community, especially those at the Office of the Secretary of Defense for 
Program Analysis and Evaluation and at the United States Transportation Command. 
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SUMMARY 

BACKGROUND 

Strategic mobility issues have long concerned various elements of the Department of 
Defense (DoD). Theater commanders and the United States Transportation Com- 
mand (USTRANSCOM) are interested in the ability of the military transportation 
system (i.e., the collection of aircraft, ships, airfields, and seaports used to move car- 
goes; it is also referred to as the mobility system) to support contingency plans; they 
and the services determine the best use of available assets to respond to emergen- 
cies. The Joint Staff and the Office of the Secretary of Defense consider long-range 
force structure issues. Such issues have become more pressing following the end of 
the Cold War. Where once strategic mobility analysts could focus on a large-scale 
NATO-versus-Warsaw Pact war, now they must address a wide range of scenarios in 
diverse parts of the world, which significantly complicates transportation planning. 

Computer models have played an important role in analyzing strategic mobility re- 
quirements. The transportation system is so large and complex that it would take far 
too long to plan or evaluate movements of any size without them. Models currently 
in use are primarily deterministic simulations; they take as inputs information about 
cargoes, planes, ships, and ports and produce estimates about when cargoes could 
be delivered. These models were developed to answer questions about the ability of 
the current transportation fleet to meet required delivery dates, and they perform 
this function reasonably well. 

However, models currently in use do not deal well with questions about how many 
assets would be required to deliver cargoes by a specific date, because they require 
the information being sought as part of the input. That is, the analyst must define 
the assets available before the model will run. To find a "best" solution, the analyst 
must vary the inputs on a trial-and-error basis, frequently running the models hun- 
dreds of times, searching for an answer. Not only is this process inefficient and time- 
consuming, but it also does not guarantee that the result will be optimum in any real 
sense of the word. It will simply represent the best solution from the many model 
runs. 



xii    New Capabilities for Strategic Mobility Analysis Using Mathematical Programming 

PURPOSE 

This drawback prompted RAND to recommend that the Joint Staff develop new 
models specifically to address transportation requirements issues. RAND identified 
two technologies as promising: knowledge-based modeling and mathematical pro- 
gramming modeling. This report describes the development and operating charac- 
teristics of a family of strategic mobility models using the mathematical program- 
ming approach. It also includes the formulas and computer programs so that others 
can verify, duplicate, or extend the model. 

WHY MATHEMATICAL PROGRAMMING? 

Models are clearly useful in analyzinglarge or complex problems. As useful as they 
are, most simulation models used in mobility analysis are informal. That is, most of 
them are written in programming languages and do not rest on formal mathematical 
or logical principles. Thus, although they may make complex issues easier to under- 
stand, it is still difficult to prove anything based on them. Mathematical models, on 
the other hand, contain equations, rest on demonstrated mathematical principles, 
and are subject to definitive proofs. 

Mathematical programming (MP) is the general term that applies to a family of solu- 
tion techniques for a wide range of problems. MP formulations offer a number of 
advantages for addressing transportation requirements questions. MP models 

• directly provide optimal answers 

• consider all possible combinations of inputs 

• provide information on excess capacities in the system 

• define the economic advantage of obtaining additional constrained resources. 

These characteristics offer the mobility analyst a powerful tool. An MP model can 
define the optimal solution for the analyst, and, if the optimal solution is impractical, 
it will help examine trade-offs among the different components of the transportation 
system to find the "best" practical solution. Thus, the analyst can determine the op- 
timal answer with various constraints (e.g., limited budget to acquire new assets) or 
by easing different system parameters (e.g., allowing some units to arrive later than 
planned). 

DISADVANTAGES OF MP 

All models have drawbacks, and MP models are no exception. Their primary draw- 
back is that they can require an enormous number of calculations, which tends to 
double with each additional variable. That is, adding another port, cargo, or trans- 
portation asset will double the number of calculations required. This characteristic 
has, in part, been responsible for the delay in using MP models, which have been 
theoretically proven for decades. But until the recent advances in computers and 
solution algorithms, MP models have simply been impractical, because their calcu- 
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lations take too long. Even today's computers have difficulty solving large trans- 
portation problems. A moderate-sized problem could involve trillions of calculations 
and take days or even weeks to solve. In the prototype, we have attempted to identify 
and capture the level of detail necessary to produce acceptable solutions. We elimi- 
nate the detail that is extraneous or unrealistic (because of future uncertainties). 

Partly because of the computational need to reduce the size of the MP formulation 
and partly because it is difficult to capture the intricate nature of the real world in 
analytic equations, MP models typically lack the detail necessary to fully represent 
the real world. Also, the real world does not act in an optimal fashion. Therefore, 
answers resulting from MP models often understate the true requirement. 
Simulation models, on the other hand, can capture real-world operations and repre- 
sent more detail in their formulation. The two types of models can act in concert to 
provide a better analytical environment than either by itself; the output of an MP 
model can be used as input to a simulation to provide a reasonable starting point for 
the simulation. The output of the simulation can then be used to calibrate the fac- 
tors and coefficients in the MP formulation. 

USING AGGREGATION TO DEAL WITH LARGE TRANSPORTATION 

PROBLEMS 

We attempted to use aggregation—for example, by combining cargoes of similar 
characteristics—as a way of reducing the number of calculations needed. We 
adopted the general principle that any modification of the problem that did not 
change a binding constraint (i.e., any of the factors that drive the solution) would not 
change the answer. Running the model in both aggregated and disaggregated 
modes, we then determined which aggregations had no effect on the outcome and 
which did. We determined that we could aggregate movement requirements that 
had identical ports (departure and arrival), cargo types, and loading dates. We could 
also aggregate ports that were not bottlenecks. And it was possible to determine fleet 
requirements by considering only peak periods. To illustrate the effect of the aggre- 
gation techniques, we applied them to a standard data set provided by the Advanced 
Research Projects Agency (ARPA). In its original formulation, the data set had more 
than 10 million variables. Aggregation allowed us to reduce that number to about 
4400 and still obtain identical results. 

THE MP MODEL 

We did not develop a single model to address the Joint Staff's mobility concerns. 
Rather, we developed a family of models, each of which addresses one of the trade- 
offs inherent in the overall transportation system. The basic model is a cost- 
minimization model, which views the transportation system as being composed of a 
number of objects that must move through a system on different transportation as- 
sets. Both the cargoes and the transportation assets have various characteristics. 
The model recognizes four types of cargoes: passengers, bulk, oversized, and out- 
sized.  Each cargo has two timing considerations—when it is available to load and 
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when its delivery is required—and two locations—port of embarkation (POE) and 
port of debarkation (POD). 

Transportation assets include aircraft (C-141, C-5, etc.) and numerous different kinds 
of ships (RoRo, breakbulk, etc.). Each asset has distinctive characteristics. Not all as- 
sets can carry all cargo. C-141s, for example, cannot carry outsized cargo. The model 
distinguishes between assets currently in the fleet and those that can be purchased 
or leased (e.g., Civil Reserve Airlift Fleet, Ready Reserve Fleet). New assets, such as 
the C-17 or fast ships, can be added. Each newly acquired asset has a cost associated 
with its acquisition and use. 

The transportation system is composed of a number of POEs and PODs, each pair 
representing a channel through which cargo must transit. The ports have geographi- 
cal locations (and thus a distance from each other) and a capacity measured in tons 
per day of throughput capacity. 

The model is formulated to minimize the total cost of acquiring (buying and operat- 
ing or leasing) assets above those currently in the fleet. The model delivers all car- 
goes by their required delivery date (RDD). It develops a time window for each cargo 
(one for each type of asset that can carry it) that defines the earliest and latest a cargo 
can leave a port and still meet the delivery date. The model first calculates the num- 
ber of vehicles in a particular channel on a particular day, then sums over all chan- 
nels to find out how many assets are used each day. The mathematical formulation 
of the model causes it to choose the least costly alternative that meets all constraints. 

TRADE-OFFS 

However, the least costly alternative as determined by the model may not be the 
most practical or even feasible in the real world. For example, the model might pro- 
vide a solution that exceeds the available budget. The other models in the family en- 
able the analyst to impose various constraints and derive more-practical alternatives. 
The approach involves modifying the basic cost-minimization model by adding con- 
straints and variables and altering its focus. An attractive aspect of this approach is 
that it involves changing only a few equations. 

For example, to determine the effect of a trade-off between cost and allowing some 
cargo to arrive later than the RDD, we simply constrain cost to be less than a given 
amount, add a variable to the model that allows it to ship cargo late, and change the 
objective to be one of minimizing lateness rather than cost. The model will tell the 
analyst the number of late ton-days the cost constraint will cause.1 The models will 
determine other trade-offs as well. They can also examine the effect of shipping 
some cargo early or prepositioning cargo. 

The models can also analyze multiple scenarios. This aspect of the models enables 
analysts to determine which set of transportation assets is robust across a variety of 

XA ton-day is a measure of timeliness (early or late) and is simply the number of tons of cargo multiplied 
by the number of days. 
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scenarios. That is, the models will define a transportation fleet that may not be op- 
timum for any given scenario but will satisfy the demands of a wide range of 
scenarios. 

INTENDED USE OF MP MODELS 

The Joint Staff participates in all aspects of strategic mobility analysis. However, 
their primary strategic mobility role, demanding the majority of their analytic time 
and effort, centers on balancing troops, transport, and costs. Joint Staff analysts seek 
to identify the "best" mix of airlift, sealift, and prepositioning for use in responding to 
specified contingencies in what are often termed illustrative planning scenarios. This 
volume documents the mathematical programming formulations we developed to 
enable the Joint Staff Logistics Directorate (J-4) to analyze those trade-offs between 
transport, readiness, employment times, and prepositioning. The analyses investi- 
gate preferred packages of military resources for future years. They are not con- 
cerned with short-term efficiencies or with the timing of purchases. Instead, they 
optimize the long-term structure of the military transportation system. To do so, 
they take the current and projected assets and operations of military transport as 
given. That is, the current force and its peacetime operations form the base case, and 
the models (1) investigate the ability of base-case assets to handle contingency oper- 
ations that may (or may not) be required on top of or in place of some interval 
(probably several months) of the base-case operations or (2) determine the augmen- 
tation that must be made available to handle the contingencies. This does not imply 
that the models minimize the costs expended during future contingency operation. 

The contingencies may never occur. If any of them do, the DoD, the Congress, and 
the nation will, at that time, decide how much money (and lives, industrial capacity, 
etc.) the nation is willing to spend to deal with them. Our analyses reported here in- 
vestigate, instead, how best to provide capabilities that can be used in whatever con- 
tingencies do occur and how to provide those capabilities over a 30-year planning 
horizon at the least cost. 

The analyses we describe take current or near-term projections of the military trans- 
port system and its operations as given. They investigate the capability of the system 
in selected scenarios. Then they investigate the effects of changes and additions to 
the transport system and identify the changes that will improve present capabilities 
to meet the scenario or scenarios for the least expenditure of resources. All incre- 
mental resources are costed over the full 30-year horizon, considering all currently 
expected acquisition, operation, and upkeep expenditures. As noted above, expected 
expenditures on current assets and operations are not considered. If base-case as- 
sets and/or their operations are assumed to be replaced by incremental assets, then 
only the net costs of the incremental assets are considered. The costs of incremental 
assets and their operations were developed at RAND in coordination with a study of 
the future DoD distribution system. 

The focus throughout this document remains on transportation. When our model 
explores interactions between transport and other factors, such as required delivery 
dates, availability dates, or prepositioning options, our examples typically minimize 
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only incremental transportation costs. In situations involving trade-offs between 
transport and those other variables, however, the runs output information on 
shadow prices (i.e., sensitivity measures that define the economic advantage of hav- 
ing additional capacity) for those variables, information that can be used to deter- 
mine whether such trade-offs are in fact relevant. Our formulations permit broader 
minimizations when costs of all variables (items of interest) are considered, but such 
analyses are not demonstrated because such cost information is currently not avail- 
able.2 

We might conceive of situations in which the country could procure the capabilities 
needed for a contingency only if and when a contingency occurs. For example, if a 
contingency requires only the transport of modest amounts of troops and materiel 
along established and well-defended air or rail routes, the military might be able 
simply to lease those capabilities from a commercial airline or package-delivery 
company when it needs them. More often, however, the military requirement will 
differ significantly from the civil capability and will be substantially more stressful 
and dangerous. So the military must expect to deal with the contingency by having 
its organizations procure specialized equipment and personnel, then holding them 
ready and training the personnel for specialized military operations. Note also that 
the current assets are typically expected to operate over the entire period of the con- 
tingency. And if they need to be modified or upgraded, the costs of doing so are in- 
cluded in their baseline and not considered in our optimizations. Costs of that type 
are netted out only when we investigate the replacement of current assets by incre- 
mentally procured assets. 

2For discussion of the Joint Staff roles in strategic mobility analysis, see Schänk, et al., 1991b. 
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Chapter One 

INTRODUCTION 

BACKGROUND 

Strategic mobility involves moving forces (units, support, and resupply) from their 
home station to an employment location. Numerous defense organizations address 
strategic mobility issues, and their analyses generally fall into three categories: 
The theater commanders, the United States Transportation Command 
(USTRANSCOM), and the transportation providers (the Air Mobility Command 
[AMC], the Military Sealift Command [MSC], and the Military Traffic Management 
Command [MTMC]) consider the mobility aspects of deliberate planning, that is, 
how the allocated transportation assets can best support the theater commanders' 
plans. Those same organizations, in coordination with the services, address crisis 
action and execution planning issues, or determining the best use of available 
transportation assets to respond to emergencies. The Joint Staff, Office of the 
Secretary of Defense (Program, Analysis, and Evaluation), and the service 
headquarters consider questions of long-range force structure requirements, that is, 
issues surrounding the type and quantity of aircraft, ships, and prepositioned assets 
that support strategic mobility. The research described here addresses the third 
category and describes how a modeling approach can assist analysts in dealing with 
such issues. 

Recent changes in the world political climate have made strategic mobility issues 
even more complex and difficult to address. As a result of the withdrawal of former 
Soviet forces from Eastern Europe and the collapse of the Soviet empire, a portion of 
U.S. forces have been withdrawn from bases in Europe and the U.S. defense budget 
has been reduced. The lessening military tension following the collapse of the Soviet 
Union is counterbalanced by the increasing unrest and friction in the Third World 
and elements of the former Soviet Union. No longer do strategic mobility analyses 
focus only on the rapid deployment of forces to Europe. Now, analysts must address 
questions regarding where forces may have to be sent, what forces will be required, 
and whether the ultimate location has an infrastructure to support airlift and sealift 
operations. 

Studies of the third category of strategic mobility issues focus on the resources re- 
quired by the mobility system—that is, the number and types of transportation 
assets needed to deliver a set of cargoes by their specified dates.   However, such 
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studies must also consider the trade-offs in the overall transportation system, such as 
relaxing delivery dates or cargo availability dates, or prepositioning cargoes. 
Increases or decreases in any of these parameters can affect transportation require- 
ments. 

To address these long-range resource issues, analysts frequently employ mobility 
models. The models currently used by organizations involved in strategic mobility 
analysis are primarily deterministic simulations: They accept information about the 
cargoes to be moved, the ships and planes available to move cargoes, and the overall 
transportation system, and they produce estimates of when cargoes can be delivered. 
These models order cargoes according to some ranking scheme, select them one at a 
time, and route them through the system according to rules they contain. These 
models were built to address questions concerning the capabilities of the existing 
transportation fleet to meet desired force-delivery dates. Although all existing 
models have some limitations, they appear to perform such capability assessments 
adequately. However, questions involving how many transportation assets are re- 
quired to deliver a set of cargoes by specified (closure) dates are difficult to answer 
using existing models. 

They are difficult to answer because the information that is unknown—the number 
of aircraft and ships—is required as input. Therefore, analysts must vary input values 
on a trial-and-error basis, hoping to find the combination that achieves the desired 
closures. It is not unusual for analysts to run an existing model hundreds of times in 
their search for an answer. And, even if a combination of assets that meets desired 
objectives emerges, there is no guarantee that the resulting transportation fleet is 
"optimal" in anyway. 

Furthermore, transportation requirements issues go beyond the question of how 
many of what types of assets are needed. The Joint Staff must also examine a num- 
ber of related questions, including the following: 

• What assets should be prepositioned and where? 

• When should specific units be available to load? 

• When should reserve mobility assets1 be activated and how many? 

• How do answers differ for different scenarios? 

Existing models do not address these questions well, either. Because of the difficulty 
in answering this range of questions using existing models, we recommended to the 
Joint Staff that new models be developed, models specifically designed to address the 
questions associated with transportation requirements issues. We further identified 
two technologies, mathematical programming (MP) and a new knowledge-based 
modeling environment being developed under Advanced Research Projects Agency 
(ARPA) sponsorship that appeared to offer promise for implementing these new 
models. 

1 Reserve mobility assets include the aircraft in the Civil Reserve Aircraft Fleet (CRAF) and the ships in the 
Ready Reserve Fleet (RRF). 
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RESEARCH OBJECTIVES 

In this research, we focused on developing a mathematical programming prototype 
that would fulfill three objectives: 

• To demonstrate the ability of mathematical programming to address directiy the 
question of the least-cost set of transportation assets required to deliver all car- 
goes on time 

• To develop alternative formulations of the solution technique to address the 
various trade-offs in the overall transportation system 

• To understand the effect on the optimal answer of aggregating different aspects 
of the system representation and of the data. 

PURPOSE AND ORGANIZATION OF THIS DOCUMENT 

The report has two intended audiences and a separate purpose for each. First, it tells 
policymakers why the current suite of mobility models does not provide satisfactory 
answers to questions about long-range force structure, describes the mathematical 
programming approach, and provides two examples—one simple and one 
complex—to illustrate how the mathematical programming models work. Second, 
the document provides analysts with the formulas and computer codes necessary to 
verify the model and replicate it for their own use. In general, the technical material, 
such as mathematical formulations and calculations, appears at the end of chapters 
and can be bypassed by those readers interested only in the policy implications. 
Chapter Two provides an overview of mathematical programming, describes its 
historical applications, and discusses its advantages and disadvantages. Chapter 
Three describes how we applied mathematical programming to the military 
transportation system and provides a simple illustration. It also provides the 
mathematical formulas. Chapter Four describes how we dealt with one of the 
disadvantages of mathematical programming: its tendency to significantly increase 
the number of calculations required as the model considers additional variables. 
Chapter Five describes how the model makes trade-offs among components of the 
transportation system. Chapter Six contains an extended illustration of an analysis. 
Finally, Chapter Seven provides results of the modeling effort, describes the current 
status of the models, and makes recommendations. There are two appendices, 
which are intended for technical readers. Appendix A contains computer codes and 
other material needed to enable others to run the model. Appendix B illustrates the 
use of shadow prices for sensitivity analysis. 



Chapter Two 

MOTIVATION FOR THE MP APPROACH 

This chapter provides a brief overview of the mathematical programming approach 
to solving transportation problems, describes previous attempts at applying MP 
techniques to this class of problems, lists some of the advantages of this approach, 
and describes difficulties that arise during model formulation and solution. 

OVERVIEW 

We build models of real-world phenomena or systems to improve our understanding 
of them. In general, the real world is complex and difficult to observe and under- 
stand; it is all but impossible to analyze directly or to prove anything about. Any 
model is necessarily simpler than the real world, which makes it easier to observe the 
model than to observe the real system under analysis. In principle, this simplicity 
makes it easier to understand the model than to understand the real system it models 
(although this is not always the case). 

However, most simulation models typically used in mobility analysis are very infor- 
mal models; they consist of programs in traditional programming languages, which 
have no formal mathematical or logical basis. Therefore, although simulation mod- 
els may be easier to understand than the real system they model, it is still very diffi- 
cult to analyze them or to prove anything about them. 

Although difficult to analyze, simulation models are useful ways to represent com- 
plex systems that are not readily amenable to mathematical formulations, such as 
combat. Simulations play a vital role in many types of analyses and have been the 
primary strategic mobility analysis tool for over two decades. Simulation models can 
be used in conjunction with mathematical models, each taking advantage of the oth- 
er's strengths, to provide a more complete and effective modeling environment than 
either type of model can provide independently. 

In contrast, mathematical programming models are based on sound mathematical 
formalisms; i.e., they are capable of mathematical proof. This characteristic makes it 
possible to understand and analyze such models using formal mathematical analysis 
techniques, which enable proofs to be made about such models. This formality dis- 
tinguishes mathematical programming from traditional simulation and provides the 
motivation for our prototyping efforts in this direction. 
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Mathematical programming is the general term applied to a family of solution tech- 
niques that determine optimal solutions for a wide range of problems. Specific MP 
formulations are influenced by the characteristics of the problem and solution space 
(the allowable values), and include linear programming, nonlinear programming, 
integer programming, goal programming, and other variations. 

HISTORICAL APPLICATION OF MP TO TRANSPORTATION PROBLEMS 

Linear programming (LP) is the typical solution technique for "simple" transporta- 
tion problems. Such problems have supplies of a commodity at various starting 
points and demands for that commodity at various final destinations. Each route (a 
supply-demand link) has an associated cost per unit shipped. The objective is to 
minimize total shipping costs while satisfying all demands. 

Strategic mobility problems, and real-world problems in general, are much more 
complex than simple textbook transportation problems. The major source of com- 
plexity is the addition of a time dimension—cargoes have times when they are avail- 
able for loading and when they are required at their destination. Also, different types 
of transportation assets are available, each with a specified speed, capacity, and cost. 
The cargoes themselves are not homogeneous but have different dimensions (length, 
width, depth) and characteristics, some of which preclude shipping them on certain 
types of transport assets. There are, therefore, different cost factors for shipping 
cargo over a route, one for each type of transportation asset. Taking time into ac- 
count, transport assets can be used again. Finally, strategic mobility problems allow 
multiporting, the ability of a transport asset to pick up cargo at various supply points 
and deliver its shipments to various destinations. 

Several attempts have been made in the past to apply MP solution techniques to 
strategic mobility problems. The first attempts were during the 1950s, the heyday of 
the development and application of linear programming. George Dantzig, the main 
force behind linear programming and the developer of the simplex solution tech- 
nique, applied linear programming to various aspects of transportation problems.1 

These earliest attempts successfully solved narrow segments of the overall problem, 
but the limited hardware and software of the time precluded consideration of the 
overall transportation requirement and of the trade-offs that exist within the trans- 
portation system. The difficulty of solving large MP problems has plagued analysts 
over the years. 

A more recent attempt at applying mathematical programming to strategic trans- 
portation problems was undertaken by the Georgia Institute of Technology for the 
Joint Deployment Agency in 1983. Their SCOPE (System for Closure Optimization 
Planning and Evaluation) model (also known as MODES, Mode Optimization and 

1 Dantzig and other RAND analysts published a series of Notes on Linear Programming in the 1950s that 
describe various applications and solution techniques of linear programming. Specific RAND documents 
in this series include RM-1328, Minimizing the Number of Carriers to Meet a Fixed Schedule, August 1954; 
RM-1369, The Problem of Routing Aircraft—A Mathematical Solution, September 1954; and RM-1833, The 
Allocation of Aircraft to Routes—An Example of Linear Programming Under Uncertain Demand December 
1956. 
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Delivery Estimate System)2 used the linear programming transportation algorithm to 
allocate lift assets to channels and to schedule the movement of materiel to meet 
delivery requirements at the destinations, subject to the constraints imposed by the 
loading capacities at the ports of embarkation (POEs), the unloading capacities at the 
ports of debarkation (PODs), the available lift assets, and the initial location of the 
materiel. It modeled airlift and sealift as long as each lift asset had only a single POE 
and a single POD; it could not handle multiport tours. 

SCOPE/MODES was unsuccessful for two related reasons. While the model was un- 
der development, the Joint Deployment Agency continually added requirements. 
These additional details caused the formulation to grow dramatically. This growth, 
in turn, overtaxed the rather limited computer capabilities of the time and the exist- 
ing solution algorithms. It became more and more difficult to generate solutions to 
reasonably sized scenarios. What started out to be a fairly high-level (low-resolution) 
model with promise quickly became a low-level (high-resolution) model that could 
be formulated but not solved. 

ADVANTAGES OFFERED BYMP FORMULATIONS 

MP formulations offer four advantages over simulation models for analyzing trans- 
portation requirements questions. First, MP models directly provide the optimal 
answer to the problem. MP formulations maximize or minimize some of the deci- 
sion variables (termed the objective function) subject to a set of system constraints. 
The answer may relate to the least-cost set of transport assets needed to deliver the 
cargoes when desired, or to the minimum amount of delay possible when trans- 
portation assets are limited, or to any other function of the decision variables. 
Analysts do not need to set up and interpret multiple runs of an MP model, as they 
must with current simulations, unless they are interested in the effects of changing 
various system parameters or factors. 

MP models determine the optimal solution by sequentially examining the entire so- 
lution space. Therefore, as a second advantage, they consider all possible combina- 
tions of different types and quantities of transport assets, all cargoes, and all time 
periods. Current simulation models consider cargoes one at a time with minimal or 
no "look ahead" to determine the ultimate effect of their immediate choices. 
Simulation models produce good solutions according to the quality of the embedded 
decision rules. However, it is unlikely that their solutions are even locally optimum 
let alone optimum over the entire range of possibilities. 

Third, MP models produce a number of other measures about the system in addition 
to the optimal answer. For example, they provide information on excess capacities 
in the system. The additional capacities may include unused transportation assets 
and excess port capacities, or extra days between availability and actual loading or 
between desired and actual delivery. This information is useful when determining 

2J. J. Jarvis and H. D. Ratliff, Models and Concepts: System for Closure Optimization Planning and 
Evaluation (SCOPE), Document PDRC-83-06, School of Industrial and Systems Engineering, Georgia 
Institute of Technology, Atlanta, 1983. 
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how robust the transportation system is in the face of numerous uncertainties. It can 
also be used to examine changes in various system parameters, such as the assign- 
ment of cargoes to ports or the determination of required available to load dates. 

Fourth, other measures produced by MP models provide information about such 
fully utilized system assets as a aircraft type or a port's throughput capacity. For 
these assets, sensitivity measures (called shadow prices) define the economic advan- 
tage (increase or decrease in the objective function) of having additional capacity. 
For example, a shadow price will specify by how much the cost of transportation can 
be reduced if a cargo, or part of a cargo, is prepositioned or if the throughput capac- 
ity of a fully utilized port is increased, although they are good only for estimating the 
effect of small changes on the objective function. These sensitivity measures are 
useful for determining the economic effect of trade-offs in the system. For example, 
the measures can be used when evaluating whether to procure additional trans- 
portation assets or to allow cargoes to arrive at their destinations later than planned. 

DIFFICULTIES THAT ARISE WITH MP FORMULATIONS3 

Typicai mathematical programming formulations involve optimizing a task easily. 
Their analytical solution, however, may or may not be attainable, depending on the 
size of the problem and the complexity of the solution algorithm. This difficulty 
confronted early efforts to apply mathematical programming techniques to strategic 
mobility problems. 

To solve mathematical programming problems, computer algorithms will require a 
certain number of calculations. Some algorithms are polynomially bounded, mean- 
ing that the number of calculations required in the worst case that might arise is 
polynomial in the number of nodes, N. In simple terms, this means that a finite 
number of points are to be considered. But vehicle-routing problems, even without 
time windows (i.e., delivery restrictions), are what is known as NP hard, which means 
that no polynomially bounded algorithm has yet been found, and, worse, if a solution 
is suggested and claimed to be optimum, it would require as many calculations to 
verify optimality as it would to derive the optimal solution from scratch. Effectively, 
an infinite number of points must be considered. It has also been shown that simply 
obtaining a feasible solution to the transportation problem with time windows is NP 
complete: no polynomially bounded algorithm has yet been found, but the feasibility 
of a proposed solution can be verified in polynomially bounded time. 

All of this simply means that NP hard algorithms tend to be exponential, requiring, in 
the worst case, a number of computations proportional to 2N. Thus, every time a 
node is added, the problem size could double. The number of calculations for even 
"medium-sized" mobility problems (e.g., about 10,000 movements) could easily be 
2 x 1090' or many trillions of calculations. Problems of this size can overwhelm the 

3See Appendix C of Schänk, et al., 1991b, for a more complete discussion of the analytical complexity of 
applying mathematical programming to the strategic mobility problem and references to research that has 
been accomplished in related commercial areas, such as trucking and airline problems. Portions of this 
chapter were extracted from that appendix. 
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capabilities of even current computers and solution algorithms, resulting in solution 
times measured in days or even weeks. 

Most of the decision support systems currently in use for related problems in non- 
military areas, such as vehicle routing and scheduling for trucking companies, ship- 
ping companies, and airlines, use heuristics, either by themselves or in conjunction 
with analytical solution techniques. While these heuristics usually result in accept- 
able operational policies—and, in general, these decision support systems are used 
for operational planning rather than for long-term resource planning—they do not 
necessarily result in optimal solutions. Even when the accuracy of the heuristics can 
be demonstrated, their use in resource planning is severely limited by their inability 
to perform the kinds of sensitivity analyses that exact, mathematical programming 
algorithms routinely provide. 

The only meaningful rationale for using heuristics instead of analytically obtained, 
optimal solutions is the computational problem mentioned above: It simply may 
take too long to obtain the solution to the mathematical programming problem to 
meet the needs of the real-time operational environment. Even here, the mathemat- 
ical programming solutions are needed to validate the proposed heuristic set of deci- 
sion rules. To assess the closeness of the heuristic solutions to the optimal solutions, 
a realistic sample of operational situations would have to be presented to the heuris- 
tics and the generated solutions compared with those obtained from the program- 
ming model. Substantial deviations from optimality could demonstrate weaknesses 
in the heuristics and highlight where improvements are needed. 

AGGREGATION TO REDUCE COMPUTATIONS 

Rather than developing heuristic solutions, we have taken an alternative approach to 
solving the mathematical programming formulations. We have carefully examined 
the effect of aggregating different components of the data or of the system. 
Aggregating the number of cargoes, transportation assets, ports, or time periods re- 
duces the size of the problem and, therefore, the solution time. Chapter Four de- 
scribes our results of aggregating these different components.4 

We believe this approach is sound because of the nature of the long-range require- 
ments questions. Typically, these types of analyses look well into the future and ad- 
dress notional scenarios. Many of the specific data, such as the cargoes to be 
shipped or the times that cargoes are required in the theater, are estimates based on 
planning figures, or best guesses. Trying to capture more and more detail for these 
long-range problems overlooks the inherent uncertainty in many of the specific 
values. 

Our research suggests that we can aggregate various components and still retain the 
essence of the problem. Our tests have shown that the answers we obtain from the 
aggregated models match exactly or very closely the results from the detailed model. 

4Modeling experts exercise great caution in aggregating transportation assets, especially sealift, that have 
unique characteristics in terms of capacity, speed, or the type of cargo carried, e.g., ammunition ships. 
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And we can generate solutions to the aggregated problems in a matter of minutes, 
versus days or weeks for the detailed formulation. 

We also have an advantage over the earlier efforts at applying mathematical pro- 
gramming to strategic mobility problems because of the impressive computational 
and algorithmic capabilities that have evolved in the past several years. Using cur- 
rent computer hardware and software, we can solve in reasonable times problems 
that could not be solved ten years ago. 

SUMMARY 

In summary, we believe that mathematical programming offers several advantages 
over traditional simulations in addressing transportation requirements questions, 
especially in examining the trade-offs that exist within the transportation system. 
The historical problem of computational complexity has been reduced somewhat by 
improved computer capabilities and solution algorithms. We reduce the complexity 
to a manageable state by aggregating certain data and system components. Our MP 
models provide reasonable answers to these requirements questions and can be 
used in conjunction with more-detailed simulation models to further understand the 
issues involved. 



Chapter Three 

GENERAL MP FORMULATION 

The product of our research is not a single mathematical formulation of the strategic 
mobility requirement question but rather a family of models, each member address- 
ing one of the inherent trade-offs in the overall transportation system. It is easiest to 
begin describing the capabilities of these alternative models by starting with the ba- 
sic cost-minimization model, which determines the least-cost set of transportation 
assets needed to deliver all cargoes on time. 

This chapter provides an overview of the basic cost-minimization model. It first de- 
scribes in general terms how we view the transportation system, including the as- 
sumptions embedded in the prototype. Then, it presents a small but detailed exam- 
ple of using the model. Finally, for those interested in the technical details, it gives 
the mathematical formulation of the model. 

MODELING THE TRANSPORTATION SYSTEM 

We view the transportation system as being composed of a number of objects, each 
with several attributes or characteristics. There are cargoes, or movement require- 
ments, that must transit through the system. Each movement is composed of 
amounts of different types of cargo. Differentiating by type is important, because 
some transportation assets cannot carry all types of cargo. We define four types: 
bulk, oversized (will not fit on a C-130), outsized (will not fit on a C-141), and 
passengers (or "PAX"). We count the number of passengers and measure other cargo 
types by their weight and their volume, or "footprint." 

Each cargo has two dates: The available to load date (ALD) indicates when the cargo 
is at a port and ready to be placed on a transportation asset; the required delivery 
date (RDD) specifies when the cargo must be at the theater port of entry. Therefore, 
there are also two locations specified for each cargo: the port of embarkation and the 
port of debarkation. 

The mobility system is composed of a number of POEs and PODs. Each POE-POD 
pair represents a potential channel that the cargo moves over, although for most sce- 
narios only a subset of the potential channels is used (that is, some POE-POD pairs 
are not linked as cargo channels). The ports have a geographical location plus a mea- 
sure of throughput capacity, usually expressed in tons per day. 

11 
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A number of different types of transportation assets move cargo. Each asset has a ca- 
pacity for different types of cargo, a speed used to compute the time to travel from 
POE to POD, and a cycle time that defines when it can be reused. We use the capaci- 
ties to determine load factors for the various types of assets. That is, we define for 
each cargo how many of each type of transportation asset are needed to move that 
cargo. 

For transportation assets, we distinguish between those that are currently in the in- 
ventory and those that can be purchased or leased. For example, we may define the 
current transportation fleet as having a number of C-5, C-141, and KC-10 aircraft, 
and roll on/roll off (RoRo), bulk, and container ships. We may also define new air- 
craft (e.g., C-17s) or ships (e.g., a new, fast sealift ship) that can be bought and 
operated in addition to the existing fleet, and aircraft (e.g., CRAF) and ships (e.g., 
RRF) that can be rented for the duration of the scenario. Each of these additional 
assets has a cost1 associated with its use. 

The objective for the model is to minimize the total cost of acquiring (buying and op- 
erating or leasing) transportation assets over and above those that are part of the cur- 
rent inventory. The model has three sets of constraints—one representing the de- 
mand for transportation and two representing the supply of transportation assets. 

The demand constraints specify that all cargoes must be delivered by their RDDs. For 
each cargo, we calculate a time window for each potential type of transportation as- 
set (i.e., a cargo will have multiple time windows, one for each transportation asset 
that can carry that cargo). A time window defines the earliest and latest that the 
cargo can leave the POE (on that type of asset) and still arrive at its POD on time. The 
early end of the time window is the cargo's ALD; the late end is the RDD minus the 
load, transit, and unload times. We typically measure time in days, although time 
steps measured in hours or day multiples are also possible. The demand constraints 
then sum over all possible vehicles that can be used to transport the cargo and over 
all days in the time window. The total amount of the cargo shipped must be 100 per- 
cent. 

The first set of supply constraints calculates the number of vehicles of a particular 
type on a particular channel on a particular day. We keep track of this number to en- 
sure that there is an integer number of vehicles on a channel. The second set of sup- 
ply constraints sums over all channels to find the total number of transportation as- 
sets used each day (or other appropriate time step). 

A SIMPLE EXAMPLE 

To show the numerical formulation and the results of the basic cost-minimization 
model, we use a very simple example containing only ten movement requirements 

1 Currently we use a 30-year life-cycle cost as the cost of buying new assets or of leasing commercial assets. 
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for a deployment from the United States to the Far East.2 The various values for 
these movements appear in Table 3.1. This example involves only air transport, for 
which we consider C-141, C-5, and KC-10 aircraft. The capacities of these aircraft for 
various types of cargo and the relative cost factors are shown in Table 3.2. This ex- 
ample assumes that the relative cost factors are 1, 4, and 2 for the C-141, C-5, and 
KC-10, respectively. Sets, variables, and parameters appear in Table 3.3. 

In this case, the objective function is to minimize cost. Given our assumption that 
the relative cost factors of C-141, C-5, and KC-10 aircraft are 1, 4, and 2, respectively, 
we multiply the number of new vehicles, Fv, by their costs and sum them, giving 

Yci41B + 4Yc5 + 2YKcio (3.1) 

where 

K, = number of transportation assets of type i. 

The load factors by cargo type, calculated by dividing the weight of the cargoes (or 
number of passengers) by the capacity of the aircraft for that type of cargo, are shown 

Table 3.1 

Sample Movement Requirements 

Movement, POE, POD, ALD, RDD, Bulk     Oversized 

m e(m) d(m) A(m) B(m) Tons Tons PAX 

1 Seattle Pingtung C001 C002 15.0 0.0 0.0 

2 Seattle Chiayi C001 C002 17.0 0.0 0.0 

3 St. Louis Pingtung C001 C002 0.0 0.0 125.0 
4 St. Louis Taipei C003 C005 0.0 43.0 75.0 

5 St. Louis Taipei C004 C006 71.0 0.0 55.0 

6 Boston Tainan C007 C010 21.0 0.0 27.0 

7 New York Tainan C006 C009 37.5 0.0 25.0 

8 San Francisco Taipei C007 con 710.0 0.0 0.0 

9 San Diego Pingtung C008 C012 377.0 0.0 0.0 

10 San Francisco Pingtung C010 C013 0.0 22.0 0.0 

Table 3.2 

Sample Vehicle Capacities 

Oversized Cost 
Vehicle Bulk Tons Tons Passengers    Factors 

C-141B 23.0 23.6 153 1 
C-5 69.6 65.0 329 4 
KC-10 62.1 26.4 257 2 

2This example was taken from MAJ Stephen Cross, A Proposed Initiative in Crisis Action Planning, Defense 
Advanced Research Projects Agency, Arlington, Va., 1990. The actual computer code and output for this 
example are provided in Appendix A. 



14    New Capabilities for Strategic Mobility Analysis Using Mathematical Programming 

Table 3.3 

Important Sets, Parameters, and Variables 

Notation Explanation 

Sets 
v Vehicle types 
m Movements 
j Cargo types 
( Time periods 

Parameters 
$v Per-unit cost of transportation assets of type v 
Bmv Latest ship date for cargo m on vehicle type v 
Am Availability date of cargo m 
Lmjv Load factor3 of cargo m of type j on vehicle v 
Sedv Cycle time for vehicle v to travel from POE e to POD d and return 
uedtv The number of vehicles v loaded at POE e bound for POD d at time t 
Nv The number of vehicles v on hand 

Variables 
Yv The number of transportation assets of type v 
Ueeiw The number of vehicles v loaded at POE e bound for POD d at time t 
Xfnp The number of vehicles v carrying cargo type j of movement m at time t 

aThe load factor is the weight of the cargoes (or number of passengers) divided by the ca- 
pacity of the aircraft for that type of cargo. 

in Table 3.4. For example, taking the 15 bulk tons from movement 1 in Table 3.1 and 
dividing it by the 23.0 bulk-ton capacity of the C-141B aircraft (Table 3.2) yields the 
0.65 load factor that appears in the first row of Table 3.4. 

Table 3.5 contains the delivery and cycle times. In this case, the delivery times are in 
hours rounded to the nearest day. Thus, for all aircraft, delivery time equals 1 day. 
Cycle time refers to the amount of time it takes for an aircraft to deliver a cargo and 
be ready to accept another load. In this case, all aircraft have a cycle time of 2 days, 
essentially the time required for a round trip. 

We use the sample movement requirements in Table 3.1, the load factors in Table 
3.4, and the cycle times in Table 3.5; set the number of available assets of a given type 
to bei (Nv = lVv);andsettherelativecostsfactorsofC-141Bs,C-5s,andKC-10sat 
1,4, and 2, respectively. The model consists of three sets of equations: 

• Cost (the objective function) 

• Demand for transportation 

• Supply of transportation. 

The objective function, Equation 3.1, is subject to the condition that the demand for 
transportation is satisfied. If we think in terms of the number of vehicles shipping a 
given cargo of a specific type on a particular day as being the decision variable, called 
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Table 3.4 

Sample Load Factors, by Cargo Type 

C-141 Loads for m Bulk Tons Oversized Tons Passengers 

1 0.65 0.00 0.00 

2 0.74 0.00 0.00 

3 0.00 0.00 0.82 

4 0.00 1.82 0.49 

5 3.09 0.00 0.36 

6 0.91 0.00 0.18 

7 1.63 0.00 0.16 

8 30.87 0.00 0.00 

9 16.39 0.00 0.00 

10 0.00 0.93 0.00 

C-5 Loads for m Bulk Tons Oversized Tons Passengers 

1 0.22 0.00 0.00 

2 0.24 0.00 0.00 

3 0.00 0.00 0.38 

4 0.00 0.66 0.23 

5 1.02 0.00 0.17 

6 0.30 0.00 0.08 

7 0.54 0.00 0.08 

8 10.20 0.00 0.00 

9 5.42 0.00 0.00 

10 0.00 0.34 0.00 

KC-10 Loads form Bulk Tons Oversized Tons Passengers 

1 0.24 0.00 0.00 

2 0.27 0.00 0.00 

3 0.00 0.00 0.49 

4 0.00 1.63 0.29 

5 1.14 0.00 0.21 

6 0.34 0.00 0.11 

7 0.60 0.00 0.10 

8 11.43 0.00 0.00 

9 6.07 0.00 0.00 

10 0.00 0.83 0.00 

NOTE: Figures are rounded to the nearest 0.01. 

Table 3.5 

Sample Delivery and Cycle Times (days) 

POD 

Delivery Time Cycle Time 

POE C-5          C-141        KC-10 C-5 C-141 KC-10 

Boston Tainan 2 2 2 

New York Tainan 2 2 2 

St. Louis Pingtung 2 2 2 

St. Louis Taipei 2 2 2 

San Diego Pingtung 2 2 2 

San Francisco Pingtung 2 2 2 

San Francisco Taipei 2 2 2 

Seattle Chiayi 2 2 2 

Seattle Pingtung 2 2 2 

NOTE: Figures are rounded up to nearest day. 
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Xmjw (where m is movement, j is type of cargo, t is time, and v is type of vehicle), 
then we can write the constraint that the first movement of bulk cargo be shipped in 
its entirety as 

Xl,BULK,C00I,C141B + 7TZT ^1,BULK,C001,C5   + ^TTT Xl,BULK,C001,KC10   ~   1    •   (3-2) 0.65    '•—-^—-"      0.22    *"""-"«"•-'      o.24 

That is, to convert the number of vehicles assigned to the fraction of the cargo 
shipped, each Xmjw is multiplied by the reciprocal of the load factor and then 
summed to ensure that all the fractions of the cargo add up to 1. 

The supply-of-transportation equation set comprises two sets of supply constraints. 
The first set sums the number of vehicles Xmjw over the cargo types to show the 
number of vehicles used on a given channel on a given day: 

Xl,BULK,C001,C141B + ^1,OVER,C001,C141B + Xl,PAX,C001,C141B 

-USEATTLE,PINGTUNG,C001,C141B   ^  0 

(3.3) 

The second set sums across all channels for every day, 

USEATTLE,CHIAYI,C001,C141B  +  UST-LOUIS,CHIAYI,C001,C141B   ^   1 +  YC141B   , 

(3.4)3 

yielding the minimum-cost set of transportation assets. The solution also yields a 
complete schedule for shipping the movements. 

This sample problem can be solved in two ways, either by linear programming, 
which allows the number of each type of vehicle to be expressed as fractions, or by 
integer programming, which additionally restricts Xmjw and Uedw to be whole num- 
bers to ensure that Yv is expressed as whole numbers of aircraft. Table 3.6 shows the 
sample integer and linear solutions and their associated minimum cost factor. Note 
that if the linear solution were to be rounded up it would be identical to the integer 
solution. 

Tables 3.7 through 3.10 show the integer and linear schedules. The vehicle schedules 
show the number of vehicles of a given type on a particular channel on a particular 
day; the cargo schedules show how each particular cargo is shipped. Note that while 
both the linear and integer approaches produce similar answers for the total number 
of assets used, both the vehicle and cargo schedules look quite different. 

3Not every calculation is included. Dots indicate that a series of calculations like those shown have been 
carried out. 
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Table 3.6 

New Assets Required 

Vehicle Integer Solution Linear Solution 

C-141B 
C-5 
KC-10 

0 
0 
4 

0 
0 
3.71 

Total Cost 8a 7.42 
aOne KC-10 has a cost factor of 2. 

Table 3.7 

Integer Vehicle Schedule 

POE POD 
Vehicle    Number of    Number     New Assets 

Day       Type       Vehicles     Available      Required 

SEATTLE PINGTUNG C001 KC10 
SEATTLE CHIAYI C001 KC10 
ST-LOUIS PINGTUNG C001 C5 
ST-LOUIS TAIPEI C003 C5 
ST-LOUIS TAIPEI C004 KC10 
ST-LOUIS TAIPEI C005 C5 
BOSTON TAINAN C007 C5 
NEW-YORK TAINAN C006 C141B 
NEW-YORK TAINAN C008 C141B 
SAN-FRAN PINGTUNG C012 C141B 
SAN-FRAN TAIPEI C007 KC10 
SAN-FRAN TAIPEI C009 C5 
SAN-FRAN TAIPEI C009 KC10 
SAN-FRAN TAIPEI C010 C141B 
SAN-DIEG PINGTUNG con C5 
SAN-DIEG PINGTUNG con KC10 5 

Tables 3.9 and 3.10 present the cargo schedules. The tables are easily interpreted. 
For example, in the integer solution, the bulk portion of movement 5 is loaded into 
0.786 of a KC-10 (48.8 tons) on day C004 and 0.319 of a C-5 (22.2 tons) on day C005; 
the entire oversized portion of movement 5 is shipped on a C-5 on day C005; and the 
entire allotment of passengers for movement 5 is shipped on a KC-10 on day C004. 

In this case, the integer solution takes only a few more seconds to calculate than the 
linear solution, but in some larger problems the integer solution can take days to cal- 
culate; a very close linear solution (i.e., one producing results close to those of the 
integer solution) can be solved in less than one hour. The linear solution has 
additional advantages, a primary one being that as a by-product it gives numbers 
that can help in sensitivity analysis. 

Table 3.11 shows the sensitivity analysis for the above problem. The "Shadow Price" 
column shows the decrease in the cost at the margin if the associated cargo is not 
shipped. A shadow price of zero indicates that the system is not used to capacity 
and, thus, prepositioning cargo, for example, would not have any effect on the least- 
cost solution. Values other than zero suggest an effect on the solution from preposi- 
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Tal Me 3.8 

Linear Vehicle Schedule 

Vehicle Number of 

POE POD Day Type Vehicles 

SEATTLE PINGTUNG C001 C5 0.216 

SEATTLE CHIAYI C001 C5 0.244 

ST-LOUIS PINGTUNG C001 C5 0.380 

ST-LOUIS TAIPEI C003 C5 0.679 

ST-LOUIS TAIPEI C003 KC10 0.292 

ST-LOUIS TAIPEI C004 C5 0.321 

ST-LOUIS TAIPEI C004 KC10 0.237 

ST-LOUIS TAIPEI C005 C5 0.679 

BOSTON TAINAN C007 C141B 0.176 

BOSTON TAINAN C007 C5 0.243 

BOSTON TAINAN C009 C141B 0.176 

NEW-YORK TAINAN C006 C141B 0.824 

NEW-YORK TAINAN C006 C5 0.321 

SAN-FRAN PINGTUNG C012 C141B 0.049 

SAN-FRAN PINGTUNG C012 C5 0.321 

SAN-FRAN TAIPEI C007 C5 0.436 

SAN-FRAN TAIPEI C007 KC10 4.700 

SAN-FRAN TAIPEI C008 C141B 0.323 

SAN-FRAN TAIPEI C009 C5 0.679 

SAN-FRAN TAIPEI C009 KC10 4.700 

SAN-FRAN TAIPEI C010 C141B 0.824 

SAN-FRAN TAIPEI C010 C5 0.321 

SAN-DIEG PINGTUNG C008 C141B 0.500 

SAN-DIEG PINGTUNG C008 C5 0.321 

SAN-DIEG PINGTUNG con C141B 0.176 

SAN-DIEG PINGTUNG con C5 0.679 

SAN-DIEG PINGTUNG con KC10 4.700 

tioning. For example, movement 8 has a shadow price of-7.663, which indicates that 
prepositioning some or all of this cargo would have a very large effect on the least- 
cost solution; movement 1 has a price of zero, which shows that even if all of move- 
ment 1 were prepositioned, it would not change the solution. The "Allowable 
Increase" and "Allowable Decrease" columns show by how much a cargo can be in- 
creased or decreased without changing the solution at all. For example, the number 
of passengers in movement 5 can be increased by 2080 percent without changing the 
least-cost solution. 

MATHEMATICAL FORMULATION OF THE COST-MINIMIZATION MODEL 

The objective function for our cost-minimization model is 

X$„r„. <3-5> 
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Table 3.9 

Integer Cargo Schedule 

Cargo Vehicle Vehicle 
Movement Type Day Type Loads 

1 BULK C001 KC10 0.242 
1 PAX C001 KC10 0.758 
2 BULK C001 KC10 0.274 
2 PAX C001 KC10 0.726 
3 OVER C001 C5 0.62 
3 PAX C001 C5 0.38 
4 BULK C003 C5 0.11 
4 OVER C003 C5 0.662 
4 I'W coo;; C", 0.228 

liiilifclllllllllllli Itllf.K. C004 KCIO 0.786 

lllllllllllllliflllllllll BULK COOfi (Ti 0.319 

llllllllllllllltllllllllt OVER C005 C5 0.681 

HB8|illBlliilil PAX C004 KCIO 0.214 
 6~  UIJI k uOO- L5 0.302 

6 OVER C007 C5 0.616 
6 PAX C007 C5 0.082 
7 BULK C006 C141B 1 
7 BULK C008 C141B 0.63 
7 OVER C008 C141B 0.206 
7 PAX C008 C141B 0.163 
8 BULK C007 KCIO 5 
8 BULK C009 C5 0.948 
8 BULK C009 KCIO 5 
8 BULK C010 C141B 1 
8 PAX C009 C5 0.052 
9 BULK con C5 0.955 
9 BULK con KCIO 5 
9 PAX con C5 0.045 

10 OVER C012 C141B 0.932 
10 PAX C012 C141B 0.068 

The first set of constraints, ensuring that 100 percent of the cargo requirements is 
shipped on time, is 

Bmv 

•k mil! 

Y   .      —  1 (3.6) 
K=>Zra/„>0     t=An      m3v 

for all mj such that Lmjv > 0 for at least one v. 

The second set of constraints, ensuring that an integer number of vehicles is used on 
each channel on each day, is 

Bmv 

ZJ ZJ X-mjtv ~ U, edtv < 0 (3.7) 
me{e,d}    t=An 

for all e e E, d e D, t e T, v e V such that channel {e, d] is in use at time t. 
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Table 3.10 

Linear Cargo Schedule 

Movement Cargo Type Day Vehicle Type Vehicle Loads 

1 BULK C001 C5 0.216 

2 BULK C001 C5 0.244 

3 PAX C001 C5 0.380 

4 OVER C003 C5 0.662 

4 PAX C003 KC10 0.292 

5 BULK C004 C5 0.321 

5 BULK C004 KC10 0.023 

5 BULK C005 C5 0.679 

5 PAX C004 KC10 0.214 

6 BULK C007 C5 0.243 

6 BULK C009 C141B 0.176 

6 PAX C007 C141B 0.176 

7 BULK C006 C141B 0.660 

7 BULK C006 C5 0.321 

7 PAX C006 C141B 0.163 

8 BULK C007 C5 0.436 

8 BULK C007 KC10 4.700 

8 BULK C008 C141B 0.323 

8 BULK C009 C5 0.679 

8 BULK C009 KC10 4.700 

8 BULK C010 C141B 0.824 

8 BULK C010 C5 0.321 

9 BULK C008 C141B 0.500 

9 BULK C008 C5 0.321 

9 BULK C011 C141B 0.176 

9 BULK con C5 0.679 

9 BULK con KC10 4.700 

10 OVER CO 12 C141B 0.049 

10 OVER C012 C5 0.321 

Table 3.11 

Sample Sensitivity Analysis 

Movement, Allowable Allowable 

m Cargo Type Shadow Price Decrease Increase 

1 Bulk 0.0(H) 1.00 0.73 

2  Bulk 0.000 1 00 0.67 

3 Passengers 0.000 1.00 0.42 

4 Oversize 0.000 0.07 0.21 

Passengers 0.000 1.00 15.06 

". Bulk 0 000 1)01 0.13 

rasttingers 1) 000 illliilllll O.M 20.80 

"6  Bulk -0._!_!5 1.00 0.53 

Passengers -0.046 0.11 4.56 

7 Bulk -0.399 0.09 0.26 

Passengers -0.039 l on 0.12 

a Bulk -7.(ifi:J 0.55 0.14 

9 Bulk -4 040 0.13 2.07 

10 Passengers 0.000 1.00 0.76 

NOTE: Figures are rounded to the nearest 0.01. 
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The third set of constraints, calculating the total number of transportation assets 
used each day, is 

XI        X Uedtv -YV<NV ^ (3.8) 
e    d    t=h-Sedv+l 

{oraüheT,veV. 

The next chapter addresses data and aggregation issues. 



Chapter Four 

DATA AND AGGREGATION ISSUES 

We indicated in Chapter Two that one of the drawbacks to mathematical program- 
ming solutions is that the number of calculations required increases exponentially as 
a function of the number of variables. Although advances in computers and solution 
algorithms have partially offset this disadvantage, large transportation problems can 
still pose computational challenges, requiring a long time to solve. This chapter de- 
scribes how we applied aggregation techniques to reduce the number of calculations 
required while retaining the accuracy and other advantages of mathematical pro- 
gramming. It illustrates the process by using data from an ARPA data set. 

THE DIFFICULTY OF SOLVING LARGE MATHEMATICAL PROGRAMMING 
PROBLEMS 

It is difficult to know exactly how long it can take to solve a given model, because so- 
lution time depends on the complexity of the model and unique characteristics of the 
data. However, we do know that solution time increases more than linearly with the 
number of nonzero variables. We can estimate an upper bound for such variables 
and, thus, the difficulty of a problem, by counting the number of all variables implied 
by the system of equations used in the model. The formulas given below were de- 
rived from the specific equations for the cost-minimization model; however, the im- 
plications for aggregation also hold for the rest of the family of strategic mobility 
models discussed in this report. 

For purposes of illustration, we use statistics from a medium-sized data set provided 
by the Advanced Research Projects Agency to participants in the ARPA-Rome Lab 
Transportation Planning and Scheduling Initiative. The data pertain to a low- 
intensity conflict outside the continental United States (CONUS). 

If we used the raw data "as is," the problem would be virtually impossible to solve 
using mathematical programming techniques and current computer technology. 
The number of variables in the ARPA data set could exceed 10 million.1 (The formula 
appears at the end of this chapter). Solution of a problem with this many variables 
would consume considerable computation time.   Therefore, we sought a way to 

xThis number represents the most pessimistic upper bound. The real upper bound will depend on the 
compositon of the movement requirement. For example, for the data sets we worked with, the number of 
variables was typically 20 percent of the upper bound. 

23 
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collapse the amount of detail in the formulation without affecting the accuracy of the 
final solution. To that end, we examined a number of approaches to aggregation. 
They included 

• combining cargoes with similar characteristics into packages of movement re- 
quirements. A package merges into one movement requirement all cargoes that 
arrive at a given POE at the same time and are required to be delivered at the 
same POD by the same time. 

• aggregating the number of channels by considering ports in complexes (POEs or 
PODs in a geographic region) instead of treating them as individual ports 

• reducing the number of types of transportation assets considered 

• reducing the number of time periods by taking large time steps or by concentrat- 
ing only on the peak periods. 

However, we can rewrite the problem to make solving it easier. In our analysis, we 
followed the general principle that any modification of the problem that does not 
change the binding constraints (that is, any of the factors that drive the solution, such 
as moving the largest cargo under the most demanding time requirements) will not 
change the answer. For each method, we ran the disaggregated model to obtain a 
solution and then reran the model with aggregated categories, comparing the solu- 
tions from each. Although this methodology was practical only for small scenarios 
(several dozen movement requirements), it enabled us to discover what types of ag- 
gregation appear to have little or no effect on the final solution. In addition, because 
of the mathematical formalism of the model, we can prove that certain types of ag- 
gregation have no effect on the final solution, and we can place upper bounds on the 
loss of precision to be expected from other types of aggregation. 

We discovered that the following modifications did not affect the solution: 

• Aggregating movement requirements with identical POEs, PODs, ALDs, IADs, 
and cargo types 

• Considering only the peak-period requirements. 

However, some modifications may change the solution: 

• Aggregating channels (POE-POD pairs) 

• Choosing larger basic time units 

• Aggregating similar vehicle types. 

In the ARPA scenario, aggregating similar movement requirements, using only the 
peak period, and using only ten channels reduce the problem size from over 10 mil- 
lion variables to fewer than 30,000 variables (a reduction of more than 97 percent). 
The solution to the aggregated problem is identical to that of the original problem. 
While the original problem required an extremely long time to solve, the smaller 
problem can be solved in a few minutes on a typical workstation. 
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TYPES OF AGGREGATION 

The following subsections describe the aggregation process in general terms. A more 
technical explanation, including the formulas, appears at the end of this chapter. 

Movements 

In our model, grouping those movements with identical POEs, PODs, ALDs, LADs, 
and cargo types will not change the final answer, because the mathematical program 
implicitly sums together all the constraints that correspond to a particular combina- 
tion of POE, POD, ALD, IAD, and cargo type when determining the demand for 
transportation assets on a particular channel in a particular time period. If this type 
of aggregation is done, the final solution can be disaggregated to determine the effect 
of a particular cargo of interest, without any resultant loss of information. 

Ports 

Aggregating ports reduces the total number of channels. Such aggregation can affect 
the fidelity of the solution in two ways. First, aggregating bottleneck ports (ports 
where desired capacity exceeds actual capacity for one or more days) may result in a 
larger virtual port, a port that does not accurately reflect the capacity constraints of 
the component ports. Second, if two aggregated ports are active during the same 
time period, aggregating ports may result in undercounting the number of trans- 
portation requirements. Undercounting occurs because "fractional" vehicles may be 
added together and rounded up to give erroneous answers (e.g., assigning half a C-5 
to Seattle-Tokyo and half a C-5 to Seattle-London on the same day, implies a need for 
twoC-5s, not one). 

However, aggregating ports that are close geographically may result in a more realis- 
tic model, because it is a simple way of treating multiporting, i.e., when a vehicle may 
stop at two closely located POEs to pick up cargo before proceeding to distant PODs. 
This method of approximation should be treated with great caution to avoid the bot- 
tleneck and undercounting pitfalls mentioned above. 

Even though the problems mentioned above exist, we may safely group together 
channels that are never active during the same time period, as long as the channels 
have identical travel-time characteristics and identical capacities. Such grouping is 
slighdy counterintuitive, because it means that two channels serving vastly different 
geographic areas can be lumped together within the model if they do not contend for 
the same transportation assets. Examining the model equations, however, reveals 
that we need unique identifiers only for the channels active during a given time pe- 
riod; swapping channel labels does not affect the mathematics of the model at all and 
can greatly reduce problem size. For example, in the problem illustrated in the pre- 
ceding chapter, we may aggregate the Seattie-Chiayi and the Boston-Tianan chan- 
nels, because the Seattie-Chiayi channel is active only during days C001 and C002, 
and the Boston-Tianan channel is active on days C007 through C010. Since these 
two channels never contend for the same transportation assets, combining them 
produces a problem that gives an identical solution to the original problem. 
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Time 

Aggregation in time reduces the number of periods and thus the total number of 
variables. Choosing large basic time periods will cause the program to overestimate 
the number of vehicles required, but the overestimation will not necessarily be great. 
It will be no greater than the ratio between cycle time rounded to the next higher unit 
and cycle time, as long as the cargo availability and due dates can be measured ex- 
actly in the larger units. Thus, if we knew availability and due dates to the day, and if 
it took a transportation asset 1.8 days to cycle, the overestimate would not be any 
larger than 2.0:1.8 (or 0.1). 

Vehicles 

Aggregating vehicles also reduces the number of variables. Aggregating two different 
types of vehicles with differing capacities (but that are otherwise identical) by de- 
scribing them as one type with the minimum capacity of the two vehicles will cause 
the program to overestimate the number of vehicles needed by at worst the ratio of 
the two capacities. (Thus, using the bulk-ton carrying capacity of C-5s and KC-10s 
shown in Table 3.2, the program would overestimate the requirement by no more 
than a factor of 0.1 (69.6/62.1 = 1.1). This small factor is due to the direct relationship 
between the carrying capacities of vehicles and their corresponding load factors for a 
given movement; the load factors, in turn, determine the number of transportation 
assets required. 

Peak Period Versus Whole Scenario 

In our model it is sufficient to consider only the peak period when solving for the 
number of transportation assets required. The peak period is defined as that period 
of time that includes all the binding cargo constraints.2 Since the peak period, by 
definition, includes the binding constraints, this reduced model is equivalent to the 
full model. To avoid any "tail effects," we include the cycle time around the peak. 

The question is how to find the peak period without solving the disaggregate model 
in the first place. In practice, this is done by looking at the desired capacity (in tons 
per day and PAX per day) for each channel for each day, summing across all chan- 
nels, and finding the time interval that has the heaviest traffic. Once the model has 
been solved for the candidate peak period, work can be double-checked by slightiy 
expanding the period covered to see if the answer changes. If not, the whole peak 
has probably been captured. In the example in Chapter Three, the peak period oc- 
curs between days C008 and C012. 

2For this example, peak airlift demand coincided with that of sealift, but this will not necessarily always be 
the case. When the periods do not coincide, we include the cargo requirements for both peaks and treat 
them as a single peak period. 
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TECHNICAL DESCRIPTION OF THE AGGREGATION PROCESS 

The number of variables for the simple cost-minimization model is given by the for- 
mula 

Vehicle_Types x Periods x Channels + 

Vehicle_Types x Periods x Movements x CargoJTypes + 

Vehicle_Types + 1. (4.1) 

Inserting the specific numbers from the ARPA data set, we get 

8 x 36 x 47 + 

8x36x9102x4 + 

8 + 1 

10,499,049 variables. 

Movements 

The process of aggregating movements reduces the problem size proportionally to 

Vehicle_Types x Periods x CargoJTypes (4.2) 

(which is simply the partial derivative of the equation for the number of variables 
with respect to the number of movements). In the ARPA example, grouping cargoes 
in this fashion reduces the number of movements from 9102 to 400, and as a result 
reduces the number of variables by 10,024,704. 

Placing these variables in mathematical terms, we can see that this reformulation is 
equivalent by examining the constraint that states that 100 percent of the cargo re- 
quirements will be shipped on time. This constraint is of the form 

  Bmv °mv       i 
£   —-Xm]w = 1    , (4.3) 

vz>Lmjv>0    t = Am Lmjv 

where Lmj„ is the load factor of cargo m of type j on vehicle v, and Xmjtv measures 
the number of cargo-Joads of cargo m of type j on vehicle v at time t. Now, let Lt and 
I2 be the load factors for two different cargoes that share the same POEs, PODs, 
ALDs, LADs, and cargo types. Clearly, the following constraints, 

ISf*i=landI££x2=l    , 
v     t   M v     t 
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are equivalent to the following constraint: 

for the solution variables of interest. 

The type of aggregation described for movements (and for ports) is a standard prac- 
tice in simulation models. We have simply applied that practice to our prototype. 

Channels 

Reducing the number of channels reduces the size of the problem proportionally to 

VehicleJTypes x Periods (4.5) 

(the partial derivative with respect to Channels). In our example, reducing the num- 
ber of channels from 47 to 10 reduces the number of variables by 10,656 but does not 
change the answer because the binding constraints remain the same, even given the 
high degree of port aggregation. 

Time 

This principle of aggregation can be derived by observing that the demand for a par- 
ticular vehicle caused by a particular cargo equals the size of the cargo divided by the 
number of periods between the first and last period it can be shipped; e.g., we can 
choose XmjW such that the cargo constraint of Equation 4.3, 

Bmv 

v^Lmjv>0    t=Am Lmjv 
Xmjtv   -   1 

is consistent with 

L mjv 

(Bmv  — A 
= Xmjw for particular m, t, v, and j. (4.6) 

■m> 

The supply of a particular vehicle for this cargo is, roughly speaking, the demand 
multiplied by the cycle time (i.e., one C-5 load of cargo translates into two C-5-days 
of transport assets required). Thus, the precision of the cycle time determines the 
amount by which the model will over- or underestimate the transportation require- 
ments, as can be seen from the fact that the two constraints that regulate transporta- 
tion supply, 

Bmv 
I       £ Xmjw - Uedw < 0 (4.7a) 

me(e,d)    t=An 
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and 

II     I      Uedtv-YV<NV , (4.7b) 
e    d  t=h-Seiiv+l 

imply that 

III I Xmiw ±NV + YV    . (4.8) 
e    d   me{e,d]    t=h-Sedv + l 

If we fix m, then this relationship can be reduced to 

X Xm]w <NV + YV. (4.9) 
t=h-Sedv + l 

The notation on the summation sign shows that if a transportation asset is assigned 
at a time t, it does not become available again until time {t + Sedv). The right-hand 
side of the equation is the total demand for transportation, so the relationship be- 
tween the cycle time Se(jv and the number of assets needed is clear. In the limiting 
case, assuming that Xm]-W is constant implies that Xmjw Sedv < Nv + Yv; i.e., the 
number of transportation assets is directly dependent on the precision of the cycle- 
time measurement. 

This technique reduces the size of the problem proportionally to 

Vehicle_Types x Channels + 

VehicleJTypes x Movements x Cargo JTypes . (4.10) 

In our example, changing the basic time unit from 1 day to 2 days reduces the size by 
5,249,524 variables and, on the test data set, produces results identical to those of the 
original problem. However, since the availabilities and due dates for the cargoes do 
not conveniently fall either on all-odd or all-even days, this reformulation is not, 
strictly speaking, equivalent to the original problem. However, the binding con- 
straints (i.e., those cargoes that drive the answer) were not affected by this change in 
precision, so the aggregate model produces identical answers. 

Vehicles 

In our model, this step reduces the problem proportionally to 

Periods x Channels + 

Periods x Movements x Cargo_Types + 1 (4.11) 

(the partial derivative with respect to VehicleJTypes). In our example, reducing the 
number of vehicle types from 8 to 4 reduces the size of the problem by 5,249,524 
variables. 
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Peak Period Versus Whole Period 

Any contiguous subset of the days of the scenario can be selected as long as it in- 
cludes the interval 

[earliest peak day - longest cycle time, 

latest peak day + longest cycle time]. 

Cutting the number of periods considered reduces the size of the problem propor- 
tionally to 

VehicleJTypes x Channels + 

Vehicle_Types x Movements x CargoJTypes (4.12) 

(the partial derivative with respect to Periods). In the example, considering a subset 
of only 10 days reduces the problem size by about 75 percent. 

Combined Effects of Aggregation and Subsetting on Problem Size 

Combining several different types of aggregation has dramatic effects on the problem 
size. Considering a subset of only 10 days and only 10 channels allows us to group 
the original 9102 movements into just 83 movements, reducing the problem size 
from 10,499,049 variables to 

8x10x10 + 

8 x 10 x 83 x 4 + 

8 + 1 

27,369 variables. 

Note that this reformulation is mathematically equivalent to the disaggregate formu- 
lation, and thus the answer to the smaller problem is identical to the answer to the 
larger problem. Aggregation need not imply a loss of precision, if done properly. 

This process reduces the problem size by a factor of 

VehicleJTypes x Periods x CargoJTypes (4.14) 

(which is simply the partial derivative of the equation for the number of variables 
with respect to the number of movements). In the ARPA example, grouping cargoes 
in this fashion reduces the number of movements from 9102 to 400, and as a result 
reduces the number of variables by 10,024,704. 



Chapter Five 

TRADE-OFFS BETWEEN EARLINESS, LATENESS, 
 PREPOSITIONING, AND COST 

Cost-minimization models have limited utility. In many cases, even the minimum- 
cost solution may yield a dollar figure that is wildly out of the question. A more real- 
istic approach is to have a cost constraint in the model, set either to a reasonable 
figure or range of figures, and to examine trade-offs between expenditures on trans- 
portation and cargo lateness, improved availability, and prepositioning. One of the 
attractive characteristics of the model described in Chapter Three is its ability to ex- 
amine exactly these trade-offs. This chapter describes how the model can be modi- 
fied to investigate different approaches to the transportation requirement and pro- 
vides the necessary mathematical formulations. 

The model is modified by taking the basic framework provided by the minimize-cost 
model, adding a cost constraint, changing the objective function to track the aspect 
of interest, and adding supplementary variables to the constraints. This process 
involves changing just a few equations; the data structures and requirements remain 
the same. 

For example, to change the minimize-cost model to one that minimizes some mea- 
sure of lateness, we take the cost, which used to be the objective function, and con- 
strain it to be less than some cost figure. Then, to allow cargo to be shipped late, we 
add a variable to the equation, a variable that normally requires that 100 percent of 
the cargo be shipped on time. The old variable that kept track of when cargo was 
shipped on time is retained, and the new variable keeps track of late cargo. Then we 
use this new variable in the new objective function, multiplying it by the number of 
days late so that we can keep track of the total number of ton-days late and thus 
minimize this common measure of lateness.1 

Changing the model to minimize earliness is done in exactiy the same way, except in 
this case the new auxiliary variable is constrained to carry only early cargo. It is the 
mirror image of the minimize-lateness model. 

Changing the model to minimize "prepo" is even simpler. In this case, the auxiliary 
variable does not need to track the date when cargo that cannot make it on time is 

lA ton-day is a measure of timeliness (early or late) and is simply the number of tons of cargo multiplied 
by the number of days. 

31 
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shipped, and the objective function just adds up all the tonnage that needs to be 
prepositioned. 

Additional models can be made that simultaneously optimize over prepositioning, 
earliness, lateness, and cost. However, this process requires specifying an objective 
function that evaluates each alternative correctly. That is, doing the job properly re- 
quires some idea of the penalty or advantage of a cargo being available a day early or 
a day late, so that the objective function can make intelligent choices between 
alternatives. 

MATHEMATICAL FORMULATIONS 

Below are listed some alternative model formulations based on the original 
minimize-cost model, which we compare directly with the original equations. 

The Minimize-Lateness Model 

This model is designed to look at the possibility of relaxing the constraints on on- 
time delivery of cargoes and to find the shipping schedule that minimizes the 
number of ton-days late. We do this by widening the time window within which a 
cargo can be shipped, allowing cargoes to be delivered after the desired delivery 
dates, and keeping track of whether cargo is shipped on time so that we can put the 
late cargo in a penalty function that we can try to minimize. Cargo that is shipped on 
time is represented by the X variable, as it has been in all the examples above, and 
cargo that is shipped late is represented by a very similar variable, W. 

The objective function of the minimize-lateness model keeps track of the number of 
ton-days late: 

* = X'X   I   1«-Bmv)KvjWmjtv    . (5J) 

m    j   t>Bmv   v 

The tonnage figure is the Kv]Wmjtv term in Equation 5.1, where Wmjtv is the variable 
that keeps track of late shipments and Kvj is a constant to convert the figure from 
vehicle-loads into tons. To get the ton-days figure, the tonnage figure is multiplied 
by the term {t - Bmv), where t is the time when the cargo actually gets shipped and 
Bmv is the latest date a cargo can be shipped and still arrive on time. 

Equation 5.2 is the cost constraint, which bears more than a passing resemblance to 
the objective function of the minimize-cost model. Here, B is the cost limit: 

X$Ä ±B    . (5.2) 
V 

Next is the constraint that 100 percent of the cargo be shipped.   The Xmjtv term 
tracks the cargo shipped on time; the Wmjw term tracks the late cargo: 
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Dmv     I 1 
X X   T—Xmjw +      X X     7^-W^n, = 1    . (5.3) 

v^Lmjv>0    t=Am Lmjv v^Lmjv>0    t>BmV+l Lmjv 

The channels constraint has an extra term to account for the late cargo: 

X     X Mm]» + Wmjtv) ~ Uedw  <  0 . (5.4) 
m e [e, d)   t 

This equation is identical to the one in the cost-minimization model, Equation 4.7b: 

XX       X Uedw -Yv <NV    . (5.5) 
e    d  t=h-Sedv+l 

The Minimize-Earliness Model 

This model is the mirror image of the minimize-lateness model above, and it works 
in a similar fashion. Instead of relaxing delivery dates, here we relax availability 
dates. We do so by widening the time window within which a cargo can be shipped, 
allowing cargoes to be available before the desired availability dates, and keeping 
track of whether cargo is shipped on time or not so that we can put the late cargo in a 
penalty function that we can try to minimize. Cargo that is shipped on time is 
represented by the X variable, and cargo that is shipped early is represented by a very 
similar variable, W. 

The objective function of the minimize-earliness model keeps track of the number of 
ton-days early. The tonnage figure is the KVjWmjtv term in Equation 5.6, where Wmjw 

is the variable that keeps track of early shipments and Kvj is a constant to convert the 
figure from vehicle-loads into tons. To get the ton-days figure, the tonnage figure is 
multiplied by the term {Am - t), where t is the time the cargo actually gets shipped 
and Am is the earliest date a cargo is said to be available: 

Am-1 Z = XX X X(4»-ovv - (5-6) 
m    j   t>Am-r  v 

where T is the maximum number of time periods we will allow the model to ship 
early. Again, B is the cost limit: 

X $Ä < B    . (5.7) 

Equation 5.8 is the constraint that 100 percent of the cargo be shipped. The Xmjw 

term tracks the cargo shipped on time; the Wmjw term tracks the early cargo: 
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(5.8) 

1 x-i X-1 1 
X X   7      Xmjw+      ZJ 2-I      T~ 

v^lmjv>0  t=Am ^mjv vz>Lmjv>0       (<A       ^"i 
-wmjtv = 1 

mjv 

t< Bmv 
t >jim-T 

The rest of the constraints are almost identical to their counterparts above, except 
that they pertain to early cargo rather than to late cargo: 

X I   -^-Xmjtv +      X X   r-WW,, = 1    . (5.9) 
v=>lmjv>0    t=Am Lmjv v=>lmjV>0    t<Am ^rnjv 

X   X (^ + V - ^ ^ °  • (5-10) 
mefeii)      t 

XX    £     I/«/«,, - y„ < N„ 
e    d   t=h-Sedv + l 

(5.11) 

The Minimize-Prepositioning Model 

The minimize-prepositioning model is very similar to the minimize-lateness and 
minimize-earliness models, except that here we assume that when a cargo cannot be 
shipped on time, it can always be prepositioned. This model parallels those above, 
except, in this case, when the ^cargoes get shipped is unimportant (and thus we can 
drop the t subscript on W), and we assume that the prepositioned cargoes do not 
contend for transportation assets with the other cargoes. 

The objective function of the minimize-prepo model, Equation 5.12, keeps track of 
the number of tons that must be prepositioned. The tonnage figure is KvJWm]v, 
where Wmjv is the variable that keeps track of prepositioned shipments, and Kv] is a 
constant to convert the figure from vehicle-loads into tons. The rest of the model is 
similar to the models above: 

^  = XXX   K*WmJv     ■ (5J2) 

X $„!"„ < B    . (5.13) 

X     X -r-Xn** +    X    r-ww = i •        (5.i4) 
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£      £ Xmjtv - Uedw < 0    . (5.15) 
me{e,d] t=Am 

£ £       £ tf«to - ^ < N,   • (5.16) 
e    d   t=h-Sedv + i 
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Bmv 
X     £ Xmjw - Uedw < 0    . (5.15) 

me{e,d\ t=Afn 

IX       X ^ - Yv < Nv   . (5.16) 
e    d   t=h-Sedv + l 



Chapter Six 

EXTENDED EXAMPLE OF THE MP MODEL 

To demonstrate the capabilities of the MP model, we used a data set provided by the 
JS/J-4. This scenario is an early version of one analyzed during the Mobility 
Requirements Study, a congressionally directed study performed by the Joint Staff to 
define transportation requirements for the future. 

Table 6.1 shows the various characteristics of the scenario and corresponding values 
for our demonstration runs. We aggregated the almost 5800 cargoes of the scenario 
into slightly fewer than 500. Most of the decrease results from combining cargoes 
with the same ALD, RDD, POE, and POD into a package of cargoes. 

We also examined only the peak period of the scenario, assuming that the trans- 
portation assets required during the most stressful portion of the scenario will be ad- 
equate to deliver cargoes during less stressful periods. This peak is determined by 
graphically analyzing the availability and delivery of cargo over time. For our 
demonstration runs, the peak period corresponds to days C014 to C034. (The actual 
peak period is much smaller, from days C017 to C021; however, we chose the wider 
period as a precaution to make sure that we captured all the peak and took care of 
any tail effects.) 

The scenario considers five types of aircraft (C-5, C-141, C-17, CRAF passenger, and 
CRAF cargo) and numerous different types of ships that vary by type (e.g., RoRo) and 
by capacity and speed. For our demonstration runs, we used the five aircraft types 
but considered only three types of ships—RoRos, bulk, and container. The capacities 
and speeds of these ship types are averages for the fleet. 

Table 6.1 

Data Set Characteristics 

Counts for 
Scenario Peak Period 

Movement requirements 
Days 
Types of aircraft 
Types of ships 
Origins 
Destinations 

5761 
181 

5 
Many 

52 
2 

490 
20 

5 
3 
3 
2 
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Finally, we aggregated the original 52 CONUS POEs into three "port aggregates": 
East Coast, West Coast, and Gulf Coast. (Most current models use this method of 
aggregation.) There are two PODs (Japan and Korea) in both the original scenario 
and in our demonstration runs. 

Table 6.2 shows the various parameters for the transportation assets shown, which 
include initially 100 C-5s, 150 C-141s, and various numbers of the three ship types. 
No more C-5s or C-141s can be obtained, but additional ships can be purchased. The 
last column in the table shows the 30-year life-cycle costs (LCCs) for these additional 
ships. 

We also assumed that CRAF assets can augment the military airlift fleet. We assumed 
that 15 long-range, wide-bodied cargo (LRWC) aircraft and 75 long-range, wide- 
bodied passenger (LRWP) aircraft can be called on (with the resulting cost per air- 
craft shown in the last column). The model results show how many CRAF assets are 
needed and when. Finally, we assumed that C-17s can be procured. 

The MP model will use the available assets (C-5s, C-141s, ships) first and then will 
draw upon CRAF assets, C-17s, or additional ships as needed. By examining the 
model results, we can determine when various asset types are utilized. 

MINIMIZING COST AND OTHER TRADE-OFFS 

Given the scenario characteristics and the assumptions about transportation assets, 
we show the results of various types of runs for the MP prototypes. These runs 
demonstrate the following capabilities: 

• Determine the least-cost set of additional transportation assets needed to deliver 
all cargoes on time. 

• Determine the minimum "delay" (i.e., ton-days late), given fixed cargo- 
availability dates and either only current transportation assets or current assets 
plus a specified budget to acquire additional transportation assets. 

• Determine the minimum early availability of units, given fixed cargo-delivery 
dates and either only current transportation assets or current transportation as- 
sets plus a specified budget to acquire additional transportation assets. 

Table 6.2 

Transport Resources Available 

On No. Buy 30-yrLCC 

Asset Hand Available More? ($ billion) 

C-5 100 No 

C-17 0 Yes 500 

C-141 150 No 

LRWC 0 15 No 30 

LRWP 0 75 No 15 

Bulk 60 Yes 400 

Container 40 Yes 400 

RoRo 50 Yes 425 
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•     Determine the minimum tons of cargo to preposition, given current transporta- 
tion assets and fixed cargo-availability and -delivery dates. 

Figure 6.1 shows the result of the MP run to minimize the cost of transportation as- 
sets to deliver all the cargoes on time, the basic mobility resource requirements 
question. The y-axis displays the 30-year life-cycle cost of the additional transporta- 
tion assets. The x-axis shows a measure of lateness; here we want zero lateness, or all 
cargoes to be delivered by their RDDs. The result shows that, in addition to the avail- 
able C-5s, C-141s, and ships, we need 290 C-17s, 25 (of the 75) CRAF LRWPs, and all 
15 of the CRAF LRWCs. The total 30-year life-cycle cost of these additional assets is 
approximately $150 billion. 

In addition to providing the least-cost set of transportation assets to close the force, 
the model shows when specific cargoes are loaded at the POEs, what type of asset 
they travel on, and when they arrive at their destination, similar to the example given 
in Chapter Three. The model output also provides details on when specific asset 
types (e.g., the CRAF aircraft) are required and where bottlenecks or slacks exist in 
the system. Sample output from this first model can be found in Appendix A. 

This demonstration shows how the MP prototype can be used to address the basic is- 
sue of transportation requirements, a question whose answer cannot be directly ob- 
tained with existing models. A solution that requires the purchase of 290 C-17s is 
impractical. The alternative formulations will allow the analyst to run a series of ex- 
cursions to trade off one aspect against another in an attempt to arrive at a more 
realistic solution. 
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Figure 6.2 shows the results of constraining the transportation assets to the available 
fleet (no additional assets can be procured) and minimizing a measure of lateness. 
Here, the objective function minimizes ton-days late, with each cargo and each day 
late valued equally. The model suggests (point B) that available transportation assets 
can deliver the force with approximately 120 thousand ton-days of cargo late. The 
model also indicates which cargoes are late and when they do arrive. 

We could have formulated the model in other ways for these types of questions. For 
example, we could have adjusted the budget available to buy more assets or we could 
have attached a cost to lateness and minimized the sum of transportation costs plus 
lateness costs. 

There are also different ways we could have evaluated "lateness." As mentioned, in 
the run shown we viewed each cargo and each day late as equal. That is, they all had 
the same penalty cost for being late. We could have put different costs of lateness on 
different cargoes; for example, we might prefer to have combat units delivered on 
time at the expense of support units or resupply. Then, we would put a much higher 
cost on combat unit ton-days late and a lower cost for support units or resupply late. 
Also, we could have evaluated days late differently. For example, the second day a 
cargo is late might cost more than the first day late. The model has the flexibility to 
address various measures of lateness and different lateness costs for different 
cargoes. Using the MP prototype in this manner provides a measure of optimal ca- 
pability of the existing transportation fleet. 

To extend our previous example further, we conducted two intermediate runs. In 
one run we specified an additional budget of $50 billion over 30 years and asked the 
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model to minimize lateness. Ninety-nine C-17s would be procured (in addition to 
the LRWCs and LRWPs shown before), and the ton-days late would be reduced to 
approximately 30,000. The second run set an additional budget of $100 billion. As 
Figure 6.3 indicates, the model suggested that 199 C-17s would be bought and that 
the cargo would be a total of approximately 5000 ton-days late. 

The results of this type of parametric analysis provide insight into the trade-offs be- 
tween additional transportation assets and lateness. Such a function is convex; that 
is, there are diseconomies to adding more C-17s. The first increment of $50 billion 
reduces ton-days late significantly (by 90,000); the second increment of $50 billion 
has a much smaller effect (further reduction of almost 25,000 ton-days late); the third 
increment of $50 billion has only a slight effect (reducing lateness from 5000 to 0). 

Given this information, decisionmakers can determine whether they are willing to 
have some cargoes arrive slightly later than planned to reduce transportation costs. 
Allowing cargoes to arrive later than planned is one solution when transportation as- 
sets are limited and budgets are constrained. Each cargo can be viewed as having a 
time window. If possible, we would like each cargo to depart its POE and arrive at its 
POD within the time window. Allowing cargoes to arrive late extends one edge of the 
window. 

An alternative approach involves extending the other edge of the time window. One 
way to think of this option is that it "flattens the peak" by moving some cargo to an 
earlier time period. That is, excess transportation capacity may be available prior to 
the peak demand for transportation. If some of the cargo can be moved from a time 
period when there is more cargo to be moved than there are assets to move that 
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cargo to an earlier time period when there is excess transport capacity, it may be 
possible to deliver all cargo on time (although some cargo would arrive in the theater 
earlier than planned) with available assets. 

Figure 6.4 shows the results of various model runs in which the RDDs were fixed and 
we allowed the units to arrive at the POE earlier than their planned ALDs. We mini- 
mized a measure of earliness for existing assets and included an increment of $50 
billion to buy additional transportation assets. The top left point is the solution to 
our basic transportation question—the budget required to deliver all cargoes on time 
with their ALDs fixed. The point on the lower right is the minimum number of ton- 
days early (at the POEs) that can be attained with current transportation assets. It 
suggests that if approximately 90,000 tons-days of cargo could arrive at their POEs 
earlier, all cargoes could close when planned with current assets. The intermediate 
point shows the number of ton-days early, given $50 billion to procure additional 
transportation assets. 

As with our example of relaxing RDDs, we can formulate the objective function in a 
number of different ways and we can cost earliness in different ways (whereas here 
we valued each day early and each cargo the same). Also, the model run shows 
which cargoes must be early and when the cargoes must be at their POEs. 

With this model formulation, decisionmakers can examine the trade-offs between a 
unit's readiness (in terms of its ability to depart) and transportation costs. It may be 
less costly to have certain units available a few days early than to procure the trans- 
portation assets necessary to deliver them on time with their planned ALDs. Such 
analyses may also help in selecting which units should be designated to fill a re- 
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quirement. For example, if an armored division is needed in the theater, the analysis 
of the ALDs may suggest that one armored unit may be preferred over another be- 
cause it has an ALD that will reduce transportation costs. 

Another way to reduce transportation requirements is to preposition some cargoes. 
In this case, the model minimizes the number of prepositioned tons subject to fixed 
ALDs, RDDs, and currently available transportation assets. As indicated in Figure 
6.5, the model suggests that approximately 30,000 tons of cargo must be preposi- 
tioned to close the force when desired, using only existing transportation assets. The 
model also specifies which cargoes must be prepositioned. 

In this example, we have costed all cargoes equally. We could define different 
prepositioning costs for different cargoes to minimize total prepositioning costs. We 
could also define the objective function as the sum of transportation costs plus 
prepositioning costs to find the minimum. In such an example, some cargoes might 
be prepositioned and some additional transportation assets might be procured. 

MULTIPLE SCENARIOS 

While exercising our MP prototype, we discovered how easy it is to reformulate the 
problem to address different issues or to cost different aspects of the overall system. 
We believe that a production version of the MP prototype will provide the JS/J-4 with 
an analysis capability that currently does not exist. 

The new political order in the world has changed the focus of mobility analyses. 
Before the upheaval in Eastern Europe and the breakup of the Soviet Union, mobility 
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analysis concentrated on a NATO-versus-Warsaw Pact scenario. Because of U.S. 
commitments to its allies, the transportation requirements associated with a con- 
ventional war in Europe far outweighed the assets needed for other proposed scenar- 
ios. Now, however, the mobility community must address numerous scenarios in di- 
verse regions of the world. The various scenarios examined during the Mobility 
Requirements Study addressed several major and minor scenarios. 

These various scenarios tax the mobility system in different ways. Some require pri- 
marily airlift assets; others place heavier demands on sealift. Analysts now seek the 
strategic mobility system that can respond to all potential scenarios. That is, they 
seek a robust transportation system that, although potentially not optimum for any 
one case, can satisfy the requirements of many different scenarios. We have been 
able to demonstrate that the MP prototype can determine the optimal set of trans- 
portation assets when looking across several scenarios. 

Compared with the counts in Table 6.3, the savings implied by the two accompany- 
ing figures may seem exaggerated; however, they illustrate potential savings when al- 
ternative scenarios differ greatiy in lift requirements but have cargoes that could be 
shipped by a variety of lift assets, either airlift or sealift. Figures 6.6 and 6.7 illustrate 
a hypothetical set of scenarios in which scenario 1, if considered alone, would sug- 
gest investing mainly in airlift, whereas scenario 2, if considered alone, would suggest 
investing mainly in sealift, and for which we assume, for the purpose of illustration, 
that most cargoes can be shipped by either air or sea and are not designated in ad- 
vance for shipment by a particular transportation mode. Note that we are not as- 
suming that there is enough time to ship by sea, but rather that cargoes have not 
been preassigned to either airlift or sealift according to their cargo types. This flexi- 
bility in assigning movements to vehicles results in the cost savings evidenced in 
Figures 6.6 and 6.7. 

Consider the example shown in Figure 6.6. Scenario 1 places heavy demands on 
airlift but minor requirements on sealift. This is the scenario examined in the exam- 
ples above. Scenario 2 makes heavy demands on sealift but fewer on airlift. One so- 
lution to the movement problem would be to add the airlift requirements of the first 
scenario to those of the second, but that approach would overstate the assets re- 
quired. 

By entering both scenarios into the MP prototype at the same time, we can deter- 
mine the optimal set of transportation assets needed to accomplish either scenario. 
Table 6.3 shows some characteristics of the two scenarios, both of which were 
developed by the Joint Staff for the Mobility Requirements Study. To stress our 
formulation and MP solver, we use these scenarios and a lengthy peak period for 
both scenarios. 

Table 6.4 shows the transport required to deliver all cargoes on time for four different 
scenarios: 1 only, 2 only, 1 or 2, and 1 and 2. For the l-and-2 case, the peak period for 
scenario 2 was programmed to begin 30 days after the beginning of the peak period 
for scenario 1. Figure 6.7 depicts the result of solving for both scenarios. 
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Table 6.3 

Data Sets for Sample Scenarios 

Counts 
Scenario 1 Scenario 2 

Item Full Scenario Demo Runs Full Scenario Demo Runs 

Movement requirements 5761 1258 11,942 8595 
Days 181 75 228 75 
Types of aircraft 5 5 5 5 
Types of ships Many 3 Many 3 
Origins 52 3 66 4 
Destinations 2 4 16 2 

As noted previously, scenario 1 contains many time-sensitive cargoes and requires 
the acquisition of a large number of C-17s. These aircraft can then be used, at no ad- 
ditional cost, to deliver most or all the cargoes that would be delivered by ship. A 
nominal cost for using owned ships and aircraft for the first time induces the model 
to use an available already-used vehicle before using an available new vehicle. 
Scenario 2, on the other hand, contains significantly more cargoes but most are less 
time-sensitive and, consequently, can travel by ship. Note that, although they are 
not used in the other runs, these ships do not increase the incremental cost because 
they are already owned by or under lease to the government. The reduction in the 
number of C-17s that must be purchased significantly reduces the incremental costs. 
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Table 6.4 

Transport Required for Two Scenarios 
(all cargoes delivered on time) 

Baseline Vehicles Used by Scenario 

Vehicle Type Available 1 2 lor 2 land 2 

Aircraft 
C-5 100 100 100 100 100 

C-17 0 290 247 290 290 

C-141 150 150 150 150 150 

LRWC 15 15 15 15 15 

LWRP 75 24 42 42 42 

Ships 
Bulk 60 6 

Container 40 40 40 40 

RoRo 50 50 50 50 

Incremental costs 
(billion 1992 dollars) $146     $125   $146       $146 
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Table 6.4 shows that, when we enter both scenarios in the model and solve for the 
vehicle set that most efficiently solves scenario 1 or scenario 2, that set, not surpris- 
ingly, turns out to be almost the maximum of the two individual sets. All 290 C-17s 
are still required to deliver all the scenario 1 cargoes on time, and almost all the ships 
used to service scenario 2 are still needed, despite the additional 43 aircraft. 
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Finally, the set of vehicles required to deliver all goods on time in the l-and-2 near- 
simultaneous case turns out to be the same as that of the either/or case.1 This result 
occurs because the peak demands for aircraft in the two scenarios do not overlap. 
The peak airlift requirement for scenario 1 is sufficiently large that it can carry most 
of the later routine bulk cargoes for both scenarios. 

1The MP prototype addresses the near-simultaneous problem by treating the two scenarios as one and 
computing a least-cost set of assets to handle the total movement requirement. 



Chapter Seven 

RESULTS, VALIDATION, AND EXTENDING THE PROTOTYPE 

RESULTS 

Although our original focus when we began the research was on determining the 
least-cost set of transportation assets to deliver specified forces on time, we have 
been able to reformulate the basic model to address many other issues of interest. In 
the preceding chapter, we showed model runs that demonstrate the following ca- 
pabilities: 

• Direcüy determines the least-cost set of transportation assets to deliver all the 
forces by their RDDs. 

• Determines the minimum amount of lateness, measured in various ways, given 
an existing set of transportation assets and a limited budget to buy and operate 
more. The model also shows which cargoes are late and how late they are. 

• Examines the trade-offs in having units arrive at POEs earlier than needed and 
the cost of transportation assets needed to deliver the force on time. The model 
shows which cargoes require earlier ALDs and how much earlier than planned 
they must be ready to load. 

• Shows how much and which cargoes must be prepositioned to deliver the force 
on time when transportation assets are limited. 

• Examines multiple scenarios simultaneously to determine the robust set of 
transportation assets needed to meet potential commitments. 

We believe that the mobility community has not been able to address these types of 
issues as effectively with current models. The capabilities offered by a mathematical 
programming model enhance the set of analysis tools available to the mobility com- 
munity. 

VALIDATION 

Models are validated to determine whether they accurately represent the real system. 
Models are also verified to ensure that the computer program prepared for the model 
is correct and is performing properly. The logical internal structure of the 
mathematical programming formulation and the representation of that structure 
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using the GAMS computer system help us to achieve model verification.1 Model val- 
idation is accomplished through the calibration of the model, usually by comparing 
model results with real-world output. When discrepancies exist between the model 
predictions and the actual system's behavior, the model parameters and coefficients 
are adjusted. This process is repeated until the accuracy of the model is judged 
acceptable. 

It is in model validation that existing simulation models can be interfaced with the 
mathematical programming model. The mathematical programming formulation 
assumes the real world operates in an optimal fashion: Cargo is loaded in a way that 
best utilizes available space, units and equipment arrive when scheduled, and, in 
general, the system functions in perfect ways. The mathematical programming 
formulation does not capture those uncertainties that exist in the real system that 
preclude optimal operations. Simulation models attempt to represent real-world 
operations, often using Monte Carlo techniques to represent real-world uncertain- 
ties. 

The least-cost formulation of the mathematical programming model provides the 
optimal set of transportation assets needed to deliver all cargoes by their required 
delivery dates. Output from this mathematical programming model can be used as 
input to an existing simulation model, and the simulated delivery dates can be ob- 
served along with other characteristics of the system's operations, such as load fac- 
tors for various types of aircraft or ships. The factors and parameters of the MP 
formulation can then be adjusted and the model exercised again. Through this 
interfacing of the MP and simulation models, the MP model can be calibrated. This 
calibration will help make the MP model a valid representation of the real system and 
produce results that do not understate real transportation needs 

EXTENDING AND USING THE MP PROTOTYPE 

The model we have been using is a prototype, developed to demonstrate the feasibil- 
ity of underlying principles and to examine alternative formulations. A full produc- 
tion model will require additional effort. Some effort should be expended on con- 
structing the front end of the prototype, such as creating data-entry screens, to assist 
the analyst in setting up the model runs. Although a prototype, the model does pro- 
vide immediate capabilities. As analysts become more familiar with it, they will de- 
termine ways to enhance it. 

We believe the model will offer new capabilities to organizations in the mobility 
community, most notably the U.S. Transportation Command and the Office of the 
Assistant Secretary of Defense for Program Analysis and Evaluation. 

^he General Algebraic Modeling System (GAMS) is a mathematical programming package developed at 
the World Bank. It uses its own computer language. 



Appendix A 

IMPLEMENTATION OF MP MODELS 

SIMPLE COST-MINIMIZATION EXAMPLE 

Below is the computer program for the simple cost-minimization example described 
in Chapter Three. It is written in the General Algebraic Modeling System (GAMS) 
programming language.1 Following the computer program is a listing of both the 
linear solution and the integer solution to the program. Insofar as possible, the 
variable names in the program correspond directly to the variable names used in the 
mathematical description of the model. 

COST-MINIMIZATION PROGRAM CODE: LINEAR SOLUTION 

set m movement requirements / 1 * 10 / ; 

set v lift assets / cl41b, c5,  kclO/ ; 

set j / bulk, over, pax / ; 

table capacity(v,j) capacity of vehicle v for cargo type j 

bulk   over    pax 

cl41b    23.0    23.6     153 

c5    69.6    65.0     329 

kclO    62.1    26.4     257 

table tons(m,j) 

bulk over pax 

1 15 0 0 

2 17 0 0 

3 0 0 125 

4 0 43 75 

5 71 0 55 

6 21 0 27 

7 37.5 0 25 

8 710 0 0 

9 377 0 0 

^AMS is a mathematical programming package developed at the World Bank. It uses its own computer 
language. 

51 
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10 0 22 

parameter L(m,j,v) load factors; 

L(m,j,v) = = tons(m,j)/capacity(v,j); 

parameter a(m) availability of movement m 

/ 

1 1 

2 1 

3 1 

4 3 

5 4 

6 7 

7 6 

8 7 

9 8 

10 10 

/; 

parameter lad(m) due date of movement m 

/ 

1 2 

2 2 

3 2 

4 5 

5 6 

6 10 

7 9 

8 11 

9 12 

10 13 

/; 
set e list of unique poes 

/ 
Seattle 

st-louis 

boston 

new-york 

san-fran 

san-dieg 

/; 

set d lis ; of unique pods 

/ 
pingtung 

chiayi 

taipei 

tainan 

/; 
parameter poe(m,e) shows which poe shipment m uses 
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/ 

1.Seattle = 1 

2.Seattle = 1 

3.st-louis = 1 

4.st-louis = 1 

5.st-louis = 1 

6.boston = 1 

7.new-york = 1 

8.san-fran = 1 

9.san-dieg = 1 

lO.san-fran = 1 

/ ; 
parameter pod(m,d) shows which pod shipment m uses 

/ 
l.pingtung    = 1 

2.chiayi = 1 

3.pingtung    = 1 

4.taipei = 1 

5.taipei = 1 

6.tainan = 1 

7.tainan = 1 

8.taipei = 1 

9.pingtung   = 1 

lO.pingtung   = 1 

/ ; 
parameter channel(e,d) 

/ 
Seattle.pingtung = 1 

Seattle.chiayi = 1 

st-louis.pingtung = 1 

st-louis.taipei = 1 

boston.tainan = 1 

new-york.tainan = 1 

san-fran.taipei = 1 

san-dieg.pingtung = 1 

san-fran.pingtung = 1 

/ ; 
parameter b(m,v) latest that m can go on v to meet lad ; 

b(m,v) = lad(m) - 1; 

set     t /cOOl  * c013 / ; 

parameter tnum(t) number of day t; 

tnum(t) = ord(t); 

set     h /cOOl  * c015 / ; 

parameter hnum(h) number of day h; 

hnum(h) = ord(h); 

parameter inuse(e,d,t) 

/ 
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Seattle.pingtung.cOOl = 1 

Seattle.chiayi.cOOl = 1 

st-louis.pingtung.cOOl = 1 

st-louis.taipei.c003 = 1 

st-louis.taipei.c004 = 1 

st-louis.taipei.c005 = 1 

boston.tainan.c007 = 1 

boston.tainan.c008 = 1 

boston.tainan.c009 = 1 

new-york.tainan.c006 = 1 

new-york.tainan.c007 = 1 

new-york.tainan.c008 = 1 

san-fran.taipei.c007 = 1 

san-fran.taipei.c008 = 1 

san-fran.taipei.c009 = 1 

san-fran.taipei.cOlO = 1 

san-dieg.pingtung.c008 = 1 

san-dieg.pingtung.c009 = 1 

san-dieg.pingtung.c010 = 1 

san-dieg.pingtung.c011 = 1 

san-fran.pingtung.c010 = 1 

san-fran.pingtung.c011 = 1 

san-fran.pingtung.c012 = 1 

/ ; 
parameter dollars(v) guesstimate cost of additional lift assets of type v 

/ 

cl41b   1 

c5       4 

kclO     2 

/ ; 

parameter S(e,d,v) cycle time; 

S(e,d,v) = 1; 

parameter N(v) number of lift assets of type v at on hand 

/ 

cl41b   1 

c5       1 

kclO     1 

/ ; 

variables 

U(e, d, t, v) no. of v loaded at POE e in t bound for POD d 

X(m, j , t, v) no. of v loaded with j of m on day t 

Y(v) number of type v lift assets to be acquired 

z cost to be minimized 

positive variables X, U, Y; 

equations 
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cost define objective function 

cost2 dummy constraint 

demand(m,j) every movement is shipped in its entirety 

supplyl(e,d,t,v) supply of shipping 

supply2(h,v) supply of shipping; 

cost .. z =e= sum(v, dollars(v)*Y(v)) ; 

demand(m,j) $ (tons(m,j)).. sum( (v,t) $ 

(tnum(t) ge A(m) and tnum(t) le B(m,v)), 

(1/L(m,j,v))*X(m,j,t,v) ) =e= 1 ; 

supplyl(e,d,t,v)$(inuse(e,d,t)) 

.. sum( (m,j)$ (poe(m,e) and pod(m,d) and 

(tnum(t) ge A(m) and tnum(t) le B(m,v))), X(m,j,t,v) ) - U(e,d,t,v)  =1= 0 ; 

supply2(h,v) .. sum( (e,d,t) $ 

( (tnum(t) ge (hnum(h)-S(e,d,v))) and (tnum(t) le hnum(h)) 

and inuse(e,d,t)), U(e,d,t,v) ) 

- Y(v) =1= N(v) ; 

model smmlP / demand, supplyl, supply2, cost /; 

option lp=minos5; 

solve smmlP using lp minimizing z ; 

COST-MINIMIZATION RESULTS: LINEAR PROGRAM 

  DEMAND     =E=  every movement is shipped in its entirety 

DEMAND(1,BULK)..  1.5333*X(1,BULK,C001,C141B) + 4.64*X(1,BULK,C001,C5) 

+ 4.14*X(1,BULK,C001,KC10) =E= 1 ; (LHS = 0 ***) 

DEMAND(2,BULK)..  1.3529*X(2,BULK,C001,C141B) + 4.0941*X(2,BULK,C001,C5) 

+ 3.6529*X(2,BULK,C001,KC10) =E= 1 ; (LHS = 0 ***) 

DEMAND(3,PAX)..  1.224*X(3,PAX,C001,C141B) + 2.632*X(3,PAX,C001,C5) 

+ 2.056*X(3,PAX,C001,KC10) =E= 1 ; (LHS = 0 ***) 

REMAINING 11 ENTRIES SKIPPED 

  SUPPLY1     =L=  supply of shipping 

SUPPLY1(SEATTLE,PINGTUNG,C001,C141B)..  - U(SEATTLE,PINGTUNG,C001,C141B) 

+ X(1,BULK,C001,C141B) + X(1,OVER,C001,C141B) + X(1,PAX,C001,C141B) 

=L= 0 ; (LHS = 0) 

SUPPLY1(SEATTLE,PINGTUNG,CO01,C5)..  - U(SEATTLE,PINGTUNG,CO01,C5) 

+ X(1,BULK,C001,C5) + X(1,OVER,C001,C5) + X(1,PAX,C001,C5) =L= 0 ; 

(LHS = 0) 

SUPPLY1(SEATTLE,PINGTUNG,C001,KC10)..  - U(SEATTLE,PINGTUNG,C001,KC10) 

+ X(1,BULK,C001,KC10) + X(1,OVER,C001,KC10) + X(1,PAX,C001,KC10) =L= 0 ; 

(LHS = 0) 

REMAINING 66 ENTRIES SKIPPED 

  SUPPLY2     =L=  supply of shipping 

SUPPLY2(C001,C141B)..  U(SEATTLE,PINGTUNG,C001,C141B) 

+ U(SEATTLE,CHIAYI,C001,C141B) + U(ST-LOUIS,PINGTUNG,C001,C141B) 

- Y(C141B) =L= 1 ; (LHS = 0) 
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SUPPLY2(C001,C5)..  U(SEATTLE,PINGTUNG,C001,C5) + U(SEATTLE,CHIAYI,C001,C5) 

+ U(ST-LOUIS,PINGTUNG,C001,C5) - Y(C5) =L= 1 ; (LHS = 0) 

SUPPLY2     =L=  supply of shipping 

SUPPLY2(COOl.KCIO)..  U(SEATTLE,PINGTUNG,C001,KC10) 

+ U(SEATTLE,CHIAYI,C001.KC10) + U(ST-LOUIS,PINGTUNG,C001,KC10) 

- Y(KC10) =L= 1 ; (LHS = 0) 

REMAINING 42 ENTRIES SKIPPED 

  COST       =E= define objective function 

COST..  - Y(C141B) - 4*Y(C5) - 2*Y(KC10) + Z =E= 0 ; (LHS = 0) 

  U no. of v loaded at POE e in t bound for POD d 

U(SEATTLE,PINGTUNG,C001,C141B) 

(.LO, .L, .UP = 0, 0, +INF) 

-1       SUPPLY1(SEATTLE,PINGTUNG,C001,C141B) 

1       SUPPLY2(C001,C141B) 

1       SUPPLY2(C002,C141B) 

U(SEATTLE,PINGTUNG,C001,C5) 

(.LO, .L, .UP = 0, 0, +INF) 

-1       SUPPLYl(SEATTLE,PINGTUNG,C001,C5) 

1      SUPPLY2(C001,C5) 

1       SUPPLY2(C002,C5) 

U(SEATTLE,PINGTUNG,C001,KC10) 

(.LO, .L, .UP = 0, 0, +INF) 

-1       SUPPLYl(SEATTLE,PINGTUNG,C001,KC10) 

1       SUPPLY2(C001,KC10) 

1       SUPPLY2(C002,KC10) 

REMAINING 66 ENTRIES SKIPPED 

  X no. of v loaded with j of m on day t 

X(1,BULK,C001,C141B) 

(.LO, .L, .UP = 0, 0, +INF) 

1.5333  DEMAND(1,BULK) 

1       SUPPLYl(SEATTLE,PINGTUNG,C001,C141B) 

X(1,BULK,C001,C5) 

(.LO, .L, .UP = 0, 0, +INF) 

4.64    DEMAND(1,BULK) 

1       SUPPLYl(SEATTLE,PINGTUNG,C001,C5) 

X(1,BULK,C001,KC10) 

(.LO, .L, .UP = 0, 0, +INF) 

4.14    DEMAND(1,BULK) 

1       SUPPLYl(SEATTLE,PINGTUNG,C001,KC10) 

REMAINING 213 ENTRIES SKIPPED 

  Y number of type v lift assets to be acquired 

Y(C141B) 
(.LO, .L, .UP = 0, 0, +INF) 

-1 SUPPLY2(C001,C141B) 

-1 SUPPLY2(C002,C141B) 

-1 SUPPLY2(C003,C141B) 

-1 SUPPLY2(C004,C141B) 
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-1 SUPPLY2(C005,C141B) 

-1 SUPPLY2(C006,C141B) 

-1 SUPPLY2(C007,C141B) 

-1 SUPPLY2(C008,C141B) 

-1 SUPPLY2(C009,C141B) 

-1 SUPPLY2(C010,C141B) 

-1 SUPPLY2(C011,C141B) 

-1 SUPPLY2(C012,C141B) 

-1 SUPPLY2(C013,C141B) 

-1 SUPPLY2(C014,C141B) 

-1 SUPPLY2(C015,C141B) 

-1 COST 

Y(C5) 
(.LO, .L, .UP = 0, 0, +INF) 

-1 SUPPLY2(C001,C5) 

-1 SUPPLY2(C002,C5) 

-1 SUPPLY2(C003,C5) 

-1 SUPPLY2(C004,C5) 

-1 SUPPLY2(C005,C5) 

-1 SUPPLY2(C006,C5) 

-1 SUPPLY2(C007,C5) 

-1 SUPPLY2(C008,C5) 

-1 SUPPLY2(C009,C5) 

-1 SUPPLY2(C010,C5) 

-1 SUPPLY2(C011,C5) 

-1 SUPPLY2(C012,C5) 

-1 SUPPLY2(C013,C5) 

-1 SUPPLY2(C014,C5) 

-1 SUPPLY2(C015,C5) 

-4 COST 

Y(KC10) 
(.LO, .L, .UP = 0, 0, +INF) 

-1 SUPPLY2(C001,KC10) 

-1 SUPPLY2(C002,KC10) 

-1 SUPPLY2(C003,KC10) 

-1 SUPPLY2(C004,KC10) 

-1 SUPPLY2(C005,KC10) 

-1 SUPPLY2(C006,KC10) 

-1 SUPPLY2(C007,KC10) 

-1 SUPPLY2(C008,KC10) 

-1 SUPPLY2(C009,KC10) 

-1 SUPPLY2(C010,KC10) 

-1 SUPPLY2(C011,KC10) 
-1 SUPPLY2(C012,KC10) 
-1 SUPPLY2(C013,KC10) 
-1 SUPPLY2(C014,KC10) 

-1 SUPPLY2(C015,KC10) 
-2 COST 
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cost to be minimized 

( .LO .L, . 

1 COST 

-- -- EQU DEMAND every 

LOWER LEVEL 

1 .BULK 1.000 1.000 

2 .BULK 1.000 1.000 

3 .PAX 1.000 1.000 

4 .OVER 1.000 1.000 

4 .PAX 1.000 1.000 

5 .BULK 1.000 1.000 

5 .PAX 1.000 1.000 

6 .BULK 1.000 1.000 

6 .PAX 1.000 1.000 

7 .BULK 1.000 1.000 

7 .PAX 1.000 1.000 

8 .BULK 1.000 1.000 

9 .BULK 1.000 1.000 

10 .OVER 1.000 1.000 

UP = -INF, 0, -INF) 

every movement is shipped in its entirety 

UPPER    MARGINAL 

1 000 EPS 

1 000 EPS 

1 000 EPS 

1 000 EPS 

1 000 EPS 

1 000 EPS 

1 000 EPS 

1 000 0.225 

1 000 0.044 

1 000 0.403 

1 000 0.040 

1 000 7,622 

1 000 4.047 

1 000 EPS 

EQU SUPPLYl supply of shipping 

LOWER 

SEATTLE .PINGTUNG.C001.C141B -INF 

SEATTLE .PINGTUNG.C001.C5 -INF 

SEATTLE .PINGTUNG.C001.KC10 -INF 

SEATTLE .CHIAYI  .C001.C141B -INF 

SEATTLE .CHIAYI  .C001.C5 -INF 

SEATTLE .CHIAYI  .C001.KC10 -INF 

ST-LOUIS.PINGTUNG.C001.C141B -INF 

ST-LOUIS.PINGTUNG.C001.C5 -INF 

ST-LOUIS.PINGTUNG.C001.KC10 -INF 

ST-LOUIS.TAIPEI  .C003.C141B -INF 

ST-LOUIS.TAIPEI  .C003.C5 -INF 

ST-LOUIS.TAIPEI  .C003.KC10 -INF 

ST-LOUIS.TAIPEI  .C004.C141B -INF 

ST-LOUIS.TAIPEI  .C004.C5 -INF 

ST-LOUIS.TAIPEI  .C004.KC10 -INF 

ST-LOUIS.TAIPEI  .C005.C141B -INF 

ST-LOUIS.TAIPEI  .C005.C5 -INF 

ST-LOUIS.TAIPEI  .C005.KC10 -INF 

BOSTON  .TAINAN  .C007.C141B -INF 

BOSTON  .TAINAN  .C007.C5 -INF 

BOSTON  .TAINAN  .C007.KC10 -INF 

BOSTON  .TAINAN  .C008.C141B -INF 

BOSTON  .TAINAN  .C008.C5 -INF 

BOSTON  .TAINAN  .C008.KC10 -INF 

BOSTON  .TAINAN  .C009.C141B -INF 

LEVEL UPPER MARGINAL 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

-0.247 

-0.747 

-0.667 

-0.247 

-0.747 

-0.667 

-0.247 
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BOSTON  .TAINAN C009.C5 -INF -0.747 

BOSTON  .TAINAN C009.KC10 -INF -0.667 

NEW-YORK.TAINAN C006.C141B -INF -0.247 

NEW-YORK.TAINAN C006.C5 -INF -0.747 

NEW-YORK.TAINAN C006.KC10 -INF -0.667 

NEW-YORK.TAINAN C007.C141B -INF -0.247 

NEW-YORK.TAINAN C007.C5 -INF -0.747 

NEW-YORK.TAINAN C007.KC10 -INF -0.667 

NEW-YORK.TAINAN C008.C141B -INF -0.247 

NEW-YORK.TAINAN C008.C5 -INF -0.747 

NEW-YORK.TAINAN C008.KC10 -INF -0.667 

SAN-FRAN.PINGTUNG C010.C141B -INF EPS 

SAN-FRAN.PINGTUNG C010.C5 -INF -0.747 

SAN-FRAN.PINGTUNG C010.KC10 -INF EPS 

SAN-FRAN. PINGTUNG C011.C141B -INF EPS 

SAN-FRAN.PINGTUNG C011.C5 -INF -0.747 

SAN-FRAN.PINGTUNG C011.KC10 -INF EPS 

SAN-FRAN.PINGTUNG C012.C141B -INF EPS 

SAN-FRAN.PINGTUNG C012.C5 -INF EPS 

SAN-FRAN.PINGTUNG C012.KC10 -INF EPS 

SAN-FRAN.TAIPEI C007.C141B -INF -0.247 

SAN-FRAN.TAIPEI C007.C5 -INF -0.747 

SAN-FRAN.TAIPEI C007.KC10 -INF -0.667 

SAN-FRAN.TAIPEI C008.C141B -INF -0.247 

SAN-FRAN.TAIPEI C008.C5 -INF -0.747 

SAN-FRAN.TAIPEI C008.KC10 -INF -0.667 

SAN-FRAN.TAIPEI C009.C141B -INF -0.247 

SAN-FRAN.TAIPEI C009.C5 -INF -0.747 

SAN-FRAN.TAIPEI C009.KC10 -INF -0.667 

SAN-FRAN.TAIPEI C010.C141B -INF -0.247 

SAN-FRAN.TAIPEI C010.C5 -INF -0.747 

SAN-FRAN.TAIPEI C010.KC10 -INF -0.667 

SAN-DIEG.PINGTUNG C008.C141B -INF -0.247 

SAN-DIEG.PINGTUNG C008.C5 -INF -0.747 

SAN-DIEG.PINGTUNG C008.KC10 -INF -0.667 

SAN-DIEG. PINGTUNG C009.C141B -INF -0.247 

SAN-DIEG. PINGTUNG C009.C5 -INF -0.747 

SAN-DIEG.PINGTUNG C009.KC10 -INF -0.667 

SAN-DIEG. PINGTUNG C010.C141B -INF -0.247 

SAN-DIEG.PINGTUNG C010.C5 -INF -0.747 

SAN-DIEG.PINGTUNG C010.KC10 -INF -0.667 

SAN-DIEG.PINGTUNG C011.C141B -INF -0.247 

SAN-DIEG.PINGTUNG C011.C5 -INF -0.747 

SAN-DIEG. PINGTUNG C011.KC10 -INF -0.667 
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  EQU SUPPLY2 supply of shipping 

LOWER LEVEL UPPER MARGINAL 

C001.C141B -INF 1.000 

C001.C5 -INF 0.840 1.000 

C001.KC10 -INF -3.700 1.000 

C002.C141B -INF 1.000 

C002.C5 -INF 0.840 1.000 

C002.KC10 -INF -3.700 1.000 

C003.C141B -INF 1.000 

C003.C5 -INF . 1.000 

C003.KC10 -INF -0.649 1.000 

C004.C141B -INF 1.000 

C004.C5 -INF 1.000 

C004.KC10 -INF 1.000 1.000 EPS 

C005.C141B -INF 1.000 

C005.C5 -INF 1.000 

C005.KC10 -INF -2.050 1.000 

C006.C141B -INF 0.163 1.000 

C006.C5 -INF 0.539 1.000 

C006.KC10 -INF -3.700 1.000 

C007.C141B -INF 1.000 1.000 -0 247 

C007.C5 -INF 1.000 1.000 -0 747 

C007.KC10 -INF 1.000 1.000 -0 667 

C008.C141B -INF 1.000 1.000 EPS 

C008.C5 -INF 1.000 1.000 EPS 

C008.KC10 -INF 1.000 1.000 EPS 

C009.C141B -INF 1.000 1.000 -0.247 

C009.C5 -INF 1.000 1.000 -0.747 

C009.KC10 -INF 1.000 1.000 -0.667 

C010.C141B -INF 1.000 1.000 EPS 

C010.C5 -INF 1.000 1.000 EPS 

C010.KC10 -INF 1.000 1.000 EPS 

C011.C141B -INF 1.000 1.000 -0.247 

C011.C5 -INF 1.000 1.000 -0 747 

C011.KC10 -INF 1.000 1.000 -0 667 

C012.C141B -INF 0.837 1.000 

C012.C5 -INF 0.800 1.000 

C012.KC10 -INF 1.000 1.000 

C013 .C141B -INF 1.000 

C013.C5 -INF 0.338 1.000 

C013.KC10 -INF -3.700 1.000 

C014.C141B -INF 1.000 

C014.C5 -INF 1.000 

C014.KC10 -INF -3.700 1.000 
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C015.C141B     -INF 1.000 

C015.C5        -INF 1.000 

C015.KC10      -INF     -3.700 1.000 

LOWER LEVEL UPPER MARGINAL 

  EQU COST 1.000 

COST        def ine objective function 

 VAR U no. of v ] oaded at POE e in t bound for POD d 

LOWER LEVEL UPPER MARGINAL 

SEATTLE .PINGTUNG .C001.C141B + INF EPS 

SEATTLE .PINGTUNG .C001.C5 0 216 + INF 

SEATTLE .PINGTUNG .C001.KC10 + INF EPS 

SEATTLE .CHIAYI .C001.C141B + INF EPS 

SEATTLE .CHIAYI .C001.C5 0 244 + INF 

SEATTLE .CHIAYI .C001.KC10 + INF EPS 

ST-LOUIS.PINGTUNG .C001.C141B + INF EPS 

ST-LOUIS.PINGTUNG .C001.C5 0 380 + INF 

ST-LOUIS. PINGTUNG .C001.KC10 + INF EPS 

ST-LOUIS.TAIPEI .C003.C141B + INF EPS 

ST-LOUIS.TAIPEI .C003.C5 + INF 

ST-LOUIS.TAIPEI .C003.KC10 3 050 + INF 

ST-LOUIS.TAIPEI .C004.C141B + INF EPS 

ST-LOUIS.TAIPEI .C004.C5 + INF EPS 

ST-LOUIS.TAIPEI .C004.KC10 1 649 + INF 

ST-LOUIS.TAIPEI .C005.C141B + INF EPS 

ST-LOUIS.TAIPEI .C005.C5 + INF EPS 

ST-LOUIS.TAIPEI .C005.KC10 + INF EPS 

BOSTON  .TAINAN .C007.C141B 0 176 + INF 

BOSTON  .TAINAN .C007.C5 + INF 

BOSTON  .TAINAN .C007.KC10 + INF EPS 

BOSTON  .TAINAN .C008.C141B + INF EPS 

BOSTON  .TAINAN .C008.C5 0 302 + INF 

BOSTON  .TAINAN .C008.KC10 + INF EPS 

BOSTON  .TAINAN .C009.C141B + INF EPS 

BOSTON  .TAINAN .C009.C5 + INF 

BOSTON  .TAINAN .C009.KC10 + INF 

NEW-YORK.TAINAN .C006.C141B 0 163 + INF 

NEW-YORK.TAINAN .C006.C5 0 539 + INF 

NEW-YORK.TAINAN .C006.KC10 + INF 

NEW-YORK.TAINAN .C007.C141B + INF EPS 

NEW-YORK.TAINAN .C007.C5 + INF EPS 

NEW-YORK.TAINAN .C007.KC10 + INF EPS 

NEW-YORK.TAINAN .C008.C141B + INF EPS 

NEW-YORK.TAINAN .C008.C5 + INF EPS 

NEW-YORK.TAINAN .C008.KC10 + INF EPS 
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SAN-FRAN.PINGTUNG.C010.C14IB 

SAN-FRAN.PINGTUNG.CO10.C5 

SAN-FRAN.PINGTUNG.CO10.KC10 

SAN-FRAN.PINGTUNG.C011.C141B 

SAN-FRAN.PINGTUNG.CO11.C5 

SAN-FRAN.PINGTUNG.CO11.KC10 

SAN-FRAN.PINGTUNG.C012.C141B 

SAN-FRAN.PINGTUNG.C012.C5 

SAN-FRAN. PINGTUNG. C 012 . KC10 

SAN-FRAN.TAIPEI  .C007.C141B 

SAN-FRAN.TAIPEI  .C007.C5 

SAN-FRAN.TAIPEI  .C007.KC10 

SAN-FRAN.TAIPEI  .C008.C141B 

SAN-FRAN.TAIPEI  .C008.C5 

SAN-FRAN.TAIPEI  .C008.KC10 

SAN-FRAN.TAIPEI  .C009.C141B 

SAN-FRAN.TAIPEI  .C009.C5 

SAN-FRAN.TAIPEI  .C009.KC10 

SAN-FRAN.TAIPEI  .C010.C141B 

SAN-FRAN.TAIPEI  .C010.C5 

SAN-FRAN.TAIPEI  .C010.KC10 

SAN-DIEG.PINGTUNG.C008.C141B 

SAN-DIEG.PINGTUNG.C008.C5 

SAN-DIEG.PINGTUNG.C008.KC10 

SAN-DIEG.PINGTUNG.C009.C14IB 

SAN-DIEG.PINGTUNG.C009.C5 

SAN-DIEG.PINGTUNG.C009.KC10 

SAN-DIEG.PINGTUNG.C010.C141B 

SAN-DIEG.PINGTUNG.C010.C5 

SAN-DIEG.PINGTUNG.C010.KC10 

SAN-DIEG.PINGTUNG.C011.C141B 

SAN-DIEG.PINGTUNG.C011.C5 

SAN-DIEG.PINGTUNG.C011.KC10 

 VAR X 

1 .BULK.C001.C141B 
1 .BULK.C001.C5 
1 .BULK.C001.KC10 
1 .OVER.C001.C141B 

1 .OVER.C001.C5 
1 .OVER.C001.KC10 
1 .PAX .C001.C141B 

1 .PAX .C001.C5 

1 .PAX .C001.KC10 

no. of v 

LOWER 

+ INF 

+ INF 

+ INF 

+ INF 

+ INF 

+ INF 

+ INF 

0.338     +INF 

+ INF 

0.660     +INF 

0.461     +INF 

4.700     +INF 

0.163     +INF 

0.237     +INF 

+ INF 

+ INF 

0.306     +INF 

4.700     +INF 

+ INF 

0.53 9     +INF 

+ INF 

+ INF 

+ INF 

+ INF 

0.837     +INF 

0.155     +INF 

+ INF 

0.163     +INF 

+ INF 

+ INF 

0.837     +INF 

0.461     +INF 

4.700     +INF 

loaded with j of m on day t 

LEVEL     UPPER    MARGINAL 

+ INF 

0.216     +INF 

+ INF EPS 

+INF EPS 

+INF EPS 

+ INF 

+INF EPS 

+INF EPS 

+INF       EPS 

.247 

667 

247 

667 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 
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2 .BULK.C001.C141B + INF 

2 .BULK.C001.C5 0 244 + INF 

2 .BULK.C001.KC10 + INF EPS 

2 .OVER.C001.C141B + INF EPS 

2 .OVER.C001.C5 + INF EPS 

2 .OVER.C001.KC10 + INF 

2 .PAX .C001.C141B + INF EPS 

2 .PAX .C001.C5 + INF EPS 

2 .PAX .C001.KC10 + INF EPS 

3 .BULK.C001.C141B + INF EPS 

3 .BULK.C001.C5 + INF EPS 

3 .BULK.C001.KC10 + INF EPS 

3 .OVER.C001.C141B + INF EPS 

3 .OVER.C001.C5 + INF EPS 

3 .OVER.C001.KC10 + INF EPS 

3 .PAX .C001.C141B + INF 

3 .PAX .C001.C5 0 380 + INF 

3 .PAX .C001.KC10 + INF 

4 .BULK.C003.C141B + INF EPS 

4 .BULK.C003.C5 + INF EPS 

4 .BULK.C003.KC10 1 422 + INF 

4 .BULK.C004.C141B + INF EPS 

4 .BULK.C004.C5 + INF EPS 

4 .BULK.C004.KC10 + INF EPS 

4 .OVER.C003.C141B + INF EPS 

4 .OVER.C003.C5 + INF EPS 

4 .OVER.C003.KC10 1 629 + INF 

4 .OVER.C004.C141B + INF EPS 

4 .OVER.C004.C5 + INF EPS 

4 .OVER.C004.KC10 + INF EPS 

4 .PAX .C003.C141B + INF EPS 

4 .PAX .C003.C5 + INF EPS 

4 .PAX .C003.KC10 + INF EPS 

4 .PAX .C004.C141B + INF EPS 

4 .PAX .G004.C5 + INF EPS 

4 .PAX .C004.KC10 0 292 + INF 

5 .BULK.C004.C141B + INF EPS 

5 .BULK.C004.C5 + INF EPS 

5 .BULK.C004.KC10 1 143 + INF 

5 .BULK.C005.C141B + INF EPS 

5 .BULK.C005.C5 + INF EPS 

5 .BULK.C005.KC10 + INF EPS 

5 .OVER.C004.C141B + INF EPS 

5 .OVER.C004.C5 + INF • 
5 .OVER.C004.KC10 + INF EPS 

5 .OVER.C005.C141B + INF 
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5 .OVER.C005.C5 + INF EPS 

5 .OVER.C005.KC10 + INF EPS 

5 .PAX .C004.C141B + INF 

5 .PAX .C004.C5 + INF EPS 

5 .PAX .C004.KC10       .        0 214 + INF 

5 .PAX .C005.C141B + INF EPS 

5 .PAX .C005.C5 + INF 

5 .PAX .C005.KC10 + INF 

6 .BULK.C007.C141B + INF EPS 

6 .BULK.C007.C5 + INF EPS 

6 .BULK.C007.KC10 + INF 

6 .BULK.C008.C141B + INF 

6 .BULK.C008.C5         .        0 302 + INF 

6 .BULK.C008.KC10 + INF 

6 .BULK.C009.C141B + INF 

6 .BULK.C009.C5 + INF EPS 

6 .BULK.C009.KC10 + INF EPS 

6 .OVER.C007.C141B + INF 0.247 

6 .OVER.C007.C5 + INF 0.747 

6 .OVER.C007.KC10 + INF 0.667 

6 .OVER.C008.C141B + INF 0.247 

6 .OVER.C008.C5 + INF 0.747 

6 .OVER.C008.KC10 + INF 0.667 

6 .OVER.C009.C141B + INF 0.247 

6 .OVER.C009.C5 + INF 0.747 

6 .OVER.C009.KC10 + INF 0.667 

6 .PAX .C007.C141B      .        0 176 + INF 

6 .PAX .C007.C5 + INF 0.216 

6 .PAX .C007.KC10 + INF 0.252 

6 .PAX .C008.C141B + INF EPS 

6 .PAX .C008.C5 + INF 0.216 

6 .PAX .C008.KC10 + INF 0.252 

6 .PAX .C009.C141B + INF EPS 

6 .PAX .C009.C5 + INF 0.216 

6 .PAX .C009.KC10 + INF 0.252 

7 .BULK.C006.C141B + INF EPS 

7 .BULK.C006.C5         .        0 539 + INF 

7 .BULK.C006.KC10 + INF 

7 .BULK.C007.C141B + INF 

7 .BULK.C007.C5 + INF 

7 .BULK.C007.KC10 + INF 

7 .BULK.C008.C141B + INF 

7 .BULK.C008.C5 + INF 

7 .BULK.C008.KC10 + INF 

7 .OVER.C006.C141B + INF 0.247 

7 .OVER.C006.C5 + INF 0.747 
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7 .OVER.C006.KC10 +INF     0.667 

7 .OVER.C007.C141B +INF      0.247 

7 .OVER.C007.C5 +INF      0.747 

7 .OVER.C007.KC10 +INF      0.667 

7 .OVER.C008.C141B +INF      0.247 

7 .OVER.C008.C5 +INF     0.747 

7 .OVER.C008.KC10 +INF     0.667 

7 .PAX .C006.C141B      .        0 163 + INF 

7 .PAX .C006.C5 +INF     0.216 

7 .PAX .C006.KC10 +INF      0.252 

7 .PAX .C007.C141B +INF       EPS 

7 .PAX .C007.C5 +INF      0.216 

7 .PAX .C007.KC10 +INF      0.252 

7 .PAX .C008.C141B +INF       EPS 

7 .PAX .C008.C5 +INF     0.216 

7 .PAX .C008.KC10 + INF      0.252 

8 .BULK.C007.C141B      .        0 660 + INF 

8 .BULK.C007.C5         .        0 461 + INF 

8 .BULK.C007.KC10       .        4 700 + INF 

8 .BULK.C008.C141B      .        0 163 + INF 

8 .BULK.C008.C5         .        0 237 + INF 

8 .BULK.C008.KC10 + INF 

8 .BULK.C009.C141B + INF 

8 .BULK.C009.C5         .        0 306 + INF 

8 .BULK.C009.KC10       .        4 700 + INF 

8 .BULK.C010.C141B + INF 

8 .BULK.C010.C5         .        0 539 + INF 

8 .BULK.C010.KC10 +INF       EPS 

8 .OVER.C007.C141B +INF      0.247 

8 .OVER.C007.C5 +INF      0.747 

8 .OVER.C007.KC10 +INF      0.667 

8 .OVER.C008.C141B +INF      0.247 

8 .OVER.C008.C5 +INF      0.747 

8 .OVER.C008.KC10 +INF      0.667 

8 .OVER.C009.C141B +INF      0.247 

8 .OVER.C009.C5 +INF      0.747 

8 .OVER.C009.KC10 + INF      0.6-67 

8 .OVER.C010.C141B +INF      0.247 

8 .OVER.C010.C5 +INF      0.747 

8 .OVER.C010.KC10 +INF      0.667 

8 .PAX .C007.C141B +INF      0.247 

8 .PAX .C007.C5 +INF      0.747 

8 .PAX .C007.KC10 +INF      0.667 

8 .PAX .C008.C141B +INF      0.247 

8 .PAX .C008.C5 +INF      0.747 

8 .PAX .C008.KC10 +INF     0.667 
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8 .PAX .C009.C141B + INF 0.247 

8 .PAX .C009.C5 + INF 0.747 

8 .PAX .C009.KC10 + INF 0.667 

8 .PAX .C010.C141B + INF 0.247 

8 .PAX .C010.C5 + INF 0.747 

8 .PAX .C010.KC10 + INF 0.667 

9 .BULK.C008.C141B + INF 

9 .BULK.C008.C5 + INF EPS 

9 .BULK.C008.KC10 + INF EPS 

9 .BULK.C009.C141B 0 837 + INF 

9 .BULK.C009.C5 0 155 + INF 

9 .BULK.C009.KC10 + INF 

9 .BULK.C010.C141B 0 163 + INF 

9 .BULK.C010.C5 + INF EPS 

9 .BULK.C010.KC10 + INF 

9 .BULK.C011.C141B 0 837 + INF - 

9 .BULK.C011.C5 0 461 + INF 

9 .BULK.C011.KC10 4 700 + INF 

9 .OVER.C008.C141B + INF 0.247 

9 .OVER.C008.C5 + INF 0.747 

9 .OVER.C008.KC10 + INF 0.667 

9 .OVER.C009.C141B + INF 0.247 

9 .OVER.C009.C5 + INF 0.747 

9 .OVER.C009.KC10 + INF 0.667 

9 .OVER.C010.C141B + INF 0.247 

9 .OVER.C010.C5 + INF 0.747 

9 .OVER.C010.KC10 + INF 0.667 

9 .OVER.C011.C141B + INF 0.247 

9 .OVER.C011.C5■ + INF 0.747 

9 .OVER.C011.KC10 + INF 0.667 

9 .PAX .C008.C141B + INF 0.247 

9 .PAX .C008.C5 + INF 0.747 

9 .PAX .C008.KC10 + INF 0.667 

9 .PAX .C009.C141B + INF 0.247 

9 .PAX .C009.C5 + INF 0.747 

9 .PAX .C009.KC10 +INF 0.667 

9 .PAX .C010.C141B +INF 0.247 

9 .PAX .C010.C5 + INF 0.747 

9 .PAX .C010.KC10 + INF 0.667 

9 .PAX .C011.C141B + INF 0.247 

9 .PAX .C011.C5 + INF 0.747 

9 .PAX .C011.KC10 + INF 0.667 

10 .BULK.C010.C141B + INF EPS 

10 .BULK.C010.C5 + INF 0.747 

10 .BULK.C010.KC10 + INF EPS 

10 .BULK.C011.C141B + INF EPS 
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10.BULK.COll.C5 + INF 0 .747 

10.BULK.COll.KC10 + INF EPS 

10.BULK.C012.C141B + INF EPS 

10.BULK.C012.C5 + INF EPS 

10.BULK.C012.KC10 + INF EPS 

10.OVER.C010.C141B + INF 

10.OVER.C010.C5 + INF 0 747 

10.OVER.C010.KC10 + INF 

10.OVER.COll.C141B + INF 

10.OVER.COll.C5 + INF 0 747 

10.OVER.COll.KC10 + INF 

10.OVER.C012.C141B + INF 

10.OVER.C012.C5 0 338     +INF 

10.OVER.C012.KC10 + INF 

10.PAX .C010.C141B + INF EPS 

10.PAX .C010.C5 + INF 0.747 

10.PAX .C010.KC10 + INF EPS 

10.PAX .C011.C141B + INF EPS 

10.PAX .C011.C5 + INF 0.747 

10.PAX .C011.KC10 + INF EPS 

10.PAX .C012.C141B + INF EPS 

10.PAX .C012.C5 + INF EPS 

10.PAX .C012.KC10 + INF EPS 

 VAR Y number of type v lift assets to be acquired 

LOWER LEVEL     UPPER    MARGINAL 

C141B +INF      0.259 

C5 +INF      1.758 

KC10 3.700     +INF 

LOWER     LEVEL     UPPER MARGINAL 

 VAR Z -INF      7.3 99     +INF 

Z           cost to be minimized 

COST-MINIMIZATION RESULTS: INTEGER PROGRAM 

1  set m movement requirements / 1 * 10 / ; 

2 

3  set v lift assets / cl41b, c5,  kclO/ ; 

4 

5 

6  set j / bulk, over, pax / ; 

7 

8  table capacity(v,j) capacity of vehicle v for cargo type j 

9 

10 bulk   over    pax 

11 
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12 cl41b 23.0 23.6 153 

13 c5 69.6 65.0 329 

14 kclO 62.1 26.4 257 

15 ; 

16 

17 

18 table tons(m,j) 

19 

20 bulk over pax 

21 

22 1 15 0 0 

23 2 17 0 0 

24 3 0 0 125 

25 4 0 43 75 

26 5 71 0 55 

27 6 21 0 27 

28 7 37.5 0 25 

29 8 710 0 0 

30 9 377 0 0 

31 10 0 22 0 

32 ; 

33 

34 parameter L(m,j,v) load factors; 

35 L(m, j,v) = tons(m,j)/capac ity(v,j); 

36 

37 

38 

39 parameter a(m) availability of movement m 

40 / 

41 1 1 

42 2 1 

43 3 1 

44 4 3 

45 5 4 

46 6 7 

47 7 6 

48 8 7 

49 9 8 

50 10 10 

51 /; 

52 

53 parameter lad(m) due date of movement m 

54 / 

55 1 2 

56 2 2 

57 3 2 

58 4 5 



Implementation of MP Models    69 

59 5      6 

60 6     10 

61 7      9 

62 8     11 

63 9     12 

64 10     13 

65 /; 
66 

67 

68 set e list of unique poes 

69 / 
70 Seattle 

71 st- .ouis 

72 boston 

73 new -york 

74 san -f ran 

75 san -dieg 

76 /; 
77 

78 

79 

80 set d list of unique pods 

81 / 
82 pin gtung 

83 chi ayi 

84 taipei 

85 tainan 

86 /; 
87 

88 parameter poe(m,e) shows which poe shipment m uses 

89 

90 / 
91 1.Seattle   = 1 

92 2.Seattle   = 1 

93 3.st-louis   = 1 

94 4.st-louis    = 1 

95 5.st-louis    = 1 

96 6.boston    = 1 

97 7.new-york   = 1 

98 8.san-fran  = 1 

99 9.san-dieg   = 1 

100 10.san-fran   = 1 

101 / / 
102 

103 parameter pod(m,d) shows which pod shipment m uses 

104 

105 / 



1 pingtung = 1 

2 chiayi = 1 

3 pingtung = 1 

4 taipei = 1 

5 taipei = 1 

6 tainan = 1 

7 tainan = 1 

8 taipei = 1 

9 pingtung = 1 

0 pingtung = 1 
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106 

107 

108 

109 

110 

111 

112 

113 

114 

115 

116   / ; 

117 

118 parameter channel(e,d) 

119 

120 / 

121 Seattle.pingtung = 1 

122 Seattle.chiayi = 1 

123 st-louis.pingtung = 1 

124 st-louis.taipei = 1 

125 boston.tainan = 1 

126 new-york.tainan = 1 

127 san-fran.taipei = 1 

128 san-dieg.pingtung = 1 

129 san-fran.pingtung = 1 

130 / ; 

131 
132 parameter b(m,v) latest that m can go on v to meet lad 

133 b(m,v) = lad(m) - 1; 

134 

135  set     t /cOOl  * c013 / ; 

136 

137 parameter tnum(t) number of day t; 

138 tnum(t) = ord(t); 

139 

140  set     h /cOOl  * c015 / ; 

141 

142 parameter hnum(h) number of day h; 

143 hnum(h) = ord(h); 

144 

145 parameter inuse(e,d,t) 

146 

147 / 

148 Seattle.pingtung.cOOl = 1 

149 Seattle.chiayi.cOOl = 1 

150 st-louis.pingtung.cOOl = 1 

151 st-louis.taipei.c003 = 1 

152 st-louis.taipei.c004 = 1 
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153 st-louis.taipei.c005 = 1 

154 boston.tainan.c007 = 1 

155 boston.tainan.c008 = 1 

156 boston.tainan.c009 = 1 

157 new-york.tainan.c006 = 1 

158 new-york.tainan.c007 = 1 

159 new-york.tainan.c008 = 1 

160 san-fran.taipei.c007 = 1 

161 san-fran.taipei.c008 = 1 

162 san-fran.taipei.c009 = 1 

163 san-fran.taipei.cOlO = 1 

164 san-dieg.pingtung.c008 = 1 

165 san-dieg.pingtung.c009 = 1 

166 san-dieg.pingtung.c010 = 1 

167 san-dieg.pingtung.c011 = 1 

168 san-fran.pingtung.c010 = 1 

169 san-fran.pingtung.c011 = 1 

170 san-fran.pingtung.c012 = 1 

171 / ; 

172 

173 parameter dollars(v) guesstimate cost of additional lift assets of type v 

174 / 
175 cl41b   1 

176 c5      4 

177 kclO    2 

178 / ; 

179 

180 parameter S(e,d,v) cycle time; 

181 S(e,d,v) = 1; 

182 

183 parameter N(v) number of lift assets of type v at on hand 

184 / 
185 cl41b   1 

186 c5      1 

187 kclO    1 

188 / ; 

189 

190 variables 

191 U(e, d, t, v) no. of v loaded at POE e in t bound for POD d 

192 X(m, j, t, v) no. of v loaded with j of m on day t 

193 Y(v) number of type v lift assets to be acquired 

194 z cost to be minimized 

195 ; 
196 

197 positive variables X; 

198 integer variables U, Y; 

199 
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200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

211 

212 

213 

214 

215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

equations 

cost define objective function 

cost2 dummy constraint 

demand(m,j) every movement is shipped in its entirety 

supplyl(e,d,t,v) supply of shipping 

supply2(h,v) supply of shipping; 

cost .. z =e= sum(v, dollars(v)*Y(v)) ; 

demand(m,j) $ (tons(m,j)).. sum( (v,t) $ 

(tnum(t) ge A(m) and tnum(t) le B(m,v)), 

(1/L(m,j,v))*X(m,j,t,v) ) =e= 1 ; 

supplyl(e,d,t,v)$(inuse(e,d,t)) 

.. sum( (m,j)$ (poe(m,e) and pod(m,d) and 

(tnum(t) ge A(m) and tnum(t) le B(m,v))), X(m,j,t,v) )- U(e,d,t,v) =1=  0 

supply2(h,v) .. sum( (e,d,t) $ 

( (tnum(t) ge (hnum(h)-S(e,d,v))) and (tnum(t) lehnum(h)) 

and inuse(e,d,t)), U(e,d,t,v) ) 

- Y(v) =1= N(v) ; 

model smmlP / demand, supplyl, supply2, cost /; 

option mip=lamps, iterlim=10000; 

solve smmlP using mip minimizing z 

SETS 

D 

E 

H 

J 

M 

T 

V 

PARAMETERS 

A 

B 

CAPACITY 

CHANNEL 

DOLLARS 

HNUM 

INUSE 

list of unique pods 

list of unique poes 

movement requirements 

lift assets 

availability of movement m 

latest that m can go on v to meet lad 

capacity of vehicle v for cargo type j 

guesstimate cost of additional lift assets of type v 

number of day h 
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L load factors 

LAD        due date of movement m 

N number of lift assets of type v at on hand 

POD        shows which pod shipment m uses 

POE        shows which poe shipment m uses 

S cycle time 

TNUM number of day  t 

TONS 

VARIABLES 

U no.   of v  loaded at  POE e  in  t bound  for  POD d 

X no.   of v  loaded with  j   of m on day  t 

Y number of  type v  lift  assets  to be  acquired 

Z cost  to be minimized 

EQUATIONS 

COST       define objective function 

C0ST2       dummy constraint 

DEMAND     every movement is shipped in its entirety 

SUPPLY1     supply of shipping 

SUPPLY2    supply of shipping 

  DEMAND     =E=  every movement is shipped in its entirety 

DEMAND(1,BULK)..  1.5333*X(1,BULK,C001,C141B) + 4.64*X(1,BULK,C001,C5) 

+ 4.14*X(1,BULK,C001,KC10) =E= 1 ; (LHS = 0 ***) 

DEMAND(2,BULK)..  1.3529*X(2,BULK,C001,C141B) + 4.0941*X(2,BULK,C001,C5) 

+ 3.6529*X(2,BULK,C001,KC10) =E= 1 ; (LHS = 0 ***) 

DEMAND(3,PAX)..  1.224*X(3,PAX,C001,C141B) + 2.632*X(3,PAX,C001,C5) 

+ 2.056*X(3,PAX,C001,KC10) =E= 1 ; (LHS = 0 ***) 

REMAINING 11 ENTRIES SKIPPED 

  SUPPLY1    =L=  supply of shipping 

SUPPLY1(SEATTLE,PINGTUNG,C001,C141B)..  - U(SEATTLE,PINGTUNG,C001,C141B) 

+ X(1,BULK,C001,C141B) + X(1,OVER,C001,C141B) + X(1,PAX,C001,C141B) =L= 0 ; 

(LHS = 0) 

SUPPLYKSEATTLE, PINGTUNG, CO01, C5) . .  - U (SEATTLE, PINGTUNG, C001, C5 ) 

+ X(1,BULK,C001,C5) + X(1,OVER,C001,C5) + X(1,PAX,C001,C5) =L= 0 ; 

(LHS = 0) 

SUPPLYKSEATTLE,PINGTUNG,COOl.KCIO)..  - U(SEATTLE,PINGTUNG,CO01,KC10) 

+ X(1,BULK,C001,KC10) + X(1,OVER,C001,KC10) + X(1,PAX,C001,KC10) =L= 0 ; 

(LHS = 0) 

REMAINING 66 ENTRIES SKIPPED 

  SUPPLY2     =L=  supply of shipping 

SUPPLY2(C001,C141B)..  U(SEATTLE,PINGTUNG,C001,C141B) 

+ U(SEATTLE,CHIAYI,C001,C141B) + U(ST-LOUIS,PINGTUNG,C001,C141B) 

- Y(C141B) =L= 1 ; (LHS = 0) 

SUPPLY2(C001,C5)..  U(SEATTLE,PINGTUNG,C001,C5) + U(SEATTLE,CHIAYI,C001,C5) 

+ U(ST-LOUIS,PINGTUNG,C001.C5) - Y(C5) =L= 1 ; (LHS = 0) 

SUPPLY2(C001,KC10)..  U(SEATTLE,PINGTUNG,CO01,KC10) 

+ U(SEATTLE,CHIAYI,CO01.KC10) + U(ST-LOUIS,PINGTUNG,C001,KC10) 

- Y(KC10) =L= 1 ; (LHS = 0) 
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REMAINING 42 ENTRIES SKIPPED 

  COST       =E=  define objective function 

COST..  - Y(C141B) - 4*Y(C5) - 2*Y{KC10) + Z =E= 0 ; {LHS = 0) 

  U no. of v loaded at POE e in t bound for POD d 

U(SEATTLE,PINGTUNG,C001,C141B) 

(.LO, .L, .UP = 0, 0, 100) 

-1       SUPPLY1(SEATTLE,PINGTUNG,C001,C141B) 

1       SUPPLY2(C001,C141B) 

1       SUPPLY2(C002,C141B) 

U(SEATTLE,PINGTUNG,CO01,C5) 

(.LO, .L, .UP = 0, 0, 100) 

-1       SUPPLYK SEATTLE, PINGTUNG, C001.C5) 

1       SUPPLY2(C001,C5) 

1       SUPPLY2(C002,C5) 

U(SEATTLE,PINGTUNG,C001,KC10) 

(.LO, .L, .UP = 0, 0, 100) 

-1       SUPPLY1(SEATTLE,PINGTUNG,CO 01,KC10) 

1       SUPPLY2(C001,KC10) 

1       SUPPLY2(C002,KC10) 

REMAINING 66 ENTRIES SKIPPED 

  X no. of v loaded with j of m on day t 

X(1,BULK,C001,C141B) 

(.LO, .L, .UP = 0, 0, +INF) 

1.5333  DEMAND(1,BULK) 

1       SUPPLYK SEATTLE, PINGTUNG, C001,C141B) 

X(1,BULK,C001,C5) 

(.LO, .L, .UP = 0, 0, +INF) 

4.64    DEMAND(1,BULK) 

1       SUPPLYK SEATTLE, PINGTUNG, CO01,C5) 

X(1,BULK,C001,KC10) 

(.LO, -L, .UP =0,0, +INF) 

4.14    DEMAND(1,BULK) 

1       SUPPLYK SEATTLE, PINGTUNG, CO01, KC10 ) 

REMAINING 213 ENTRIES SKIPPED 

  Y number of type v lift assets to be acquired 

Y(C141B) 

(.LO, .L, .UP = 0, 0, 100) 

-1 SUPPLY2(C001,C141B) 

-1 SUPPLY2(C002,C141B) 

-1 SUPPLY2(C003,C141B) 

-1 SUPPLY2(C004,C141B) 

-1 SUPPLY2(C005,C141B) 

-1 SUPPLY2(C006,C141B) 

-1 SUPPLY2(C007,C141B) 

-1 SUPPLY2(C008,C141B) 

-1 SUPPLY2(C009,C141B) 

-1       SUPPLY2(C010,C141B) 
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Y(C5) 

-1 SUPPLY2(C011,C141B) 

-1 SUPPLY2(C012,C141B) 

-1 SUPPLY2(C013,C141B) 

-1 SUPPLY2(C014,C141B) 

-1 SUPPLY2(C015,C141B) 

-1 COST 

(.LO, .L, .UP = 0, 0, 100) 

-1 SUPPLY2(C001,C5) 

-1 SUPPLY2(C002,C5) 

-1 SUPPLY2(C003,C5) 

-1 SUPPLY2(C004,C5) 

-1 SUPPLY2(C005,C5) 

-1 SUPPLY2(C006,C5) 

-1 SUPPLY2(C007,C5) 

-1 SUPPLY2(C008,C5) 

-1 SUPPLY2(C009,C5) 

-1 SUPPLY2(C010,C5) 

-1 SUPPLY2(C011,C5) 

-1 SUPPLY2(C012,C5) 

-1 SUPPLY2(C013,C5) 

-1 SUPPLY2(C014,C5) 

-1 SUPPLY2(C015,C5) 

-4 COST 

Y(KC10) 

(.LO, .L, .UP =0,0, 100) 

-1 SUPPLY2(COOl.KCIO) 

-1 SUPPLY2(C002,KC10) 

-1 SUPPLY2(C003,KC10) 

-1 SUPPLY2(C004,KC10) 

-1 SUPPLY2(C005,KC10) 

-1 SUPPLY2(C006,KC10) 

-1 SUPPLY2(C007,KC10) 

-1 SUPPLY2(C008,KC10) 

-1 SUPPLY2(C009,KC10) 

-1 SUPPLY2(COIO.KCIO) 

-1 SUPPLY2(C011,KC10) 

-1 SUPPLY2(C012,KC10) 

-1 SUPPLY2(C013,KC10) 

-1 SUPPLY2(C014,KC10) 

-1 SUPPLY2(C015,KC10) 

-2 COST 

  Z cost to be minimized 

Z 
(.LO, .L, .UP = -INF, 0, +INF) 

1 COST 
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 EQU DEMAND every movement is shipped in its entirety 

LOWER LEVEL UPPER MARGINAL 

1 .BULK 1.000 1.000 1.000 EPS 

2 .BULK 1.000 1.000 1.000 EPS 

3 .PAX 1.000 1.000 1.000 EPS 

4 .OVER 1.000 1.000 1.000 EPS 

4 .PAX 1.000 1.000 1.000 EPS 

5 .BULK 1.000 1.000 1.000 EPS 

5 .PAX 1.000 1.000 1.000 EPS 

6 .BULK 1.000 1.000 1.000 EPS 

6 .PAX 1.000 1.000 1.000 EPS 

7 .BULK 1.000 1.000 1.000 EPS 

7 .PAX 1.000 1.000 1.000 EPS 

8 . BULK 1.000 1.000 1.000 EPS 

9 .BULK 1.000 1.000 1.000 EPS 

10.OVER 1.000 1.000 1.000 EPS 

 EQU SUPPLY1 supply of shipping 

LOWER LEVEL     UPPER    MARGINAL 

SEATTLE PINGTUNG C001.C141B -INF EPS 

SEATTLE PINGTUNG C001.C5 -INF 

SEATTLE PINGTUNG C001.KC10 -INF EPS 

SEATTLE CHIAYI C001.C141B -INF EPS 

SEATTLE CHIAYI C001.C5 -INF EPS 

SEATTLE CHIAYI C001.KC10 -INF EPS 

ST-LOUIS PINGTUNG C001.C141B -INF EPS 

ST-LOUIS PINGTUNG C001.C5 -INF EPS 

ST-LOUIS PINGTUNG C001.KC10 -INF 

ST-LOUIS TAIPEI .C003.C141B -INF 

ST-LOUIS TAIPEI .C003.C5 -INF EPS 

ST-LOUIS TAIPEI .C003.KC10 -INF EPS 

ST-LOUIS TAIPEI .C004.C141B -INF EPS 

ST-LOUIS TAIPEI .C004.C5 -INF EPS 

ST-LOUIS TAIPEI .C004.KC10 -INF EPS 

ST-LOUIS TAIPEI .C005.C141B -INF 

ST-LOUIS TAIPEI .C005.C5 -INF EPS 

ST-LOUIS TAIPEI .C005.KC10 -INF 

BOSTON TAINAN .C007.C141B -INF EPS 

BOSTON .TAINAN .C007.C5 -INF EPS 

BOSTON .TAINAN .C007.KC10 -INF EPS 

BOSTON .TAINAN .C008.C141B -INF EPS 

BOSTON .TAINAN .C008.C5 -INF EPS 

BOSTON .TAINAN .C008.KC10 -INF EPS 

BOSTON .TAINAN .C009.C141B -INF EPS 

BOSTON .TAINAN .C009.C5 -INF EPS 

BOSTON .TAINAN .C009.KC10 -INF EPS 

NEW-YORK .TAINAN .C006.C141B -INF EPS 

NEW-YORK .TAINAN .C006.C5 -INF EPS 
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.C006.KC10 

.C007.C141B 

.C007.C5 

.C007.KC10 

.C008.C141B 

.C008.C5 

.C008.KC10 

NEW-YORK.TAINAN 

NEW-YORK.TAINAN 

NEW-YORK.TAINAN 

NEW-YORK.TAINAN 

NEW-YORK.TAINAN 

NEW-YORK.TAINAN 

NEW-YORK.TAINAN 

SAN-FRAN.PINGTUNG.C010.C141B 

SAN-FRAN.PINGTUNG.C010.C5 

SAN-FRAN.PINGTUNG.C010.KC10 

SAN-FRAN.PINGTUNG.C011.C141B 

SAN-FRAN.PINGTUNG.C011.C5 

SAN-FRAN. PINGTUNG. C 011. KC10 

SAN-FRAN.PINGTUNG.C012.C141B 

SAN-FRAN.PINGTUNG.C012.C5 

SAN-FRAN.PINGTUNG.C012.KC10 

SAN-FRAN.TAIPEI  .C007.C141B 

SAN-FRAN.TAIPEI 

SAN-FRAN.TAIPEI 

SAN-FRAN.TAIPEI 

SAN-FRAN.TAIPEI 

SAN-FRAN.TAIPEI 

SAN-FRAN.TAIPEI 

SAN-FRAN.TAIPEI 

SAN-FRAN.TAIPEI 

SAN-FRAN.TAIPEI 

SAN-FRAN.TAIPEI 

SAN-FRAN.TAIPEI 

SAN-DIEG.PINGTUNG.C008.C141B 

SAN-DIEG.PINGTUNG.C008.C5 

SAN-DIEG.PINGTUNG.C008.KC10 

SAN-DIEG.PINGTUNG.C009.C141B 

SAN-DIEG.PINGTUNG.C009.C5 

SAN-DIEG.PINGTUNG.C009.KC10 

SAN-DIEG.PINGTUNG.C010.C14IB 

SAN-DIEG.PINGTUNG.C010.C5 

SAN-DIEG.PINGTUNG.C010.KC10 

SAN-DIEG.PINGTUNG.C011.C141B 

SAN-DIEG.PINGTUNG.C011.C5 

SAN-DIEG.PINGTUNG.C011.KC10 

  EQU SUPPLY2     supply of 

LEVEL 

1.000 

-2.000 

1.000 

.C007.C5 

.C007.KC10 

.C008.C141B 

.C008.C5 

.C008.KC10 

.C009.C141B 

.C009.C5 

.C009.KC10 

.C010.C141B 

.C010.C5 

.C010.KC10 

LOWER 

C001 C141B -INF 

C001 C5 -INF 

C001 KC10 -INF 

C002 C141B -INF 

C002 .C5 -INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

-INF 

shipping 

UPPER 

1.000 

1.000 

1.000 

1.000 

1.000 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

MARGINAL 

EPS 
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C002.KC10 -INF -2.000     1.000 

C003.C141B -INF .        1.000 

C003.C5 -INF 1.000     1.000 

C003.KC10 -INF -4.000     1.000 

C004.C141B -INF .        1.000 

C004.C5 -INF 1.000     1.000 

C004.KC10 -INF -3.000     1.000 

C005.C141B -INF .        1.000 

C005.C5 -INF 1.000     1.000 

C005.KC10 -INF -3.000     1.000 

C006.C141B -INF 1.000     1.000 

C006.C5 -INF 1.000     1.000 

C006.KC10 -INF -4.000     1.000 

C007.C141B -INF 1.000     1.000 

C007.C5 -INF 1.000     1.000 

C007.KC10 -INF 1.000     1.000 

C008.C141B -INF 1.000     1.000 

C008.C5 -INF 1.000     1.000 

C008.KC10 -INF 1.000     1.000 

C009.C141B -INF 1.000     1.000 

C009.C5 -INF 1.000     1.000 

C009.KC10 -INF 1.000     1.000 

C010.C141B -INF 1.000 

C010.C5 -INF 1.000 

C010.KC10 -INF 1.000 
C011.C141B -INF 1.000 

C011.C5 -INF 1.000 
C011.KC10 -INF 1.000 

C012.C141B -INF 1.000 

C012.C5 -INF 1.000 

C012.KC10 -INF 1.000 

C013.C141B -INF 1.000 

C013.C5 -INF 
C013.KC10 -INF -4.000 

C014.C141B -INF 

C014.C5 -INF 
C014.KC10 -INF -4.000 

C015.C141B -INF 

C015.C5 -INF 
C015.KC10 -INF 

Solution Report 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

.000 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

1.000 

-4.000     1.000 
SOLVE SMMIP USING MIP FROM LINE 226 

LOWER     LEVEL UPPER    MARGINAL 

  EQU COST            •         • •        1.000 
COST       define objective function 
  VAR U no. of v loaded at POE e in t bound for POD d 

LOWER LEVEL     UPPER    MARGINAL 

SEATTLE .PINGTUNG.C001.C141B      . .      100.000      EPS 

SEATTLE .PINGTUNG.C001.C5         . -      100.000      EPS 
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SEATTLE PINGTUNG C001 KC10 1 000 100 000 EPS 

SEATTLE CHIAYI C001 C141B 100 000 EPS 

SEATTLE CHIAYI C001 C5 100 000 

SEATTLE CHIAYI C001 KC10 1 000 100 000 EPS 

ST-LOUIS PINGTUNG C001 C141B 100 000 EPS 

ST-LOUIS PINGTUNG C001 C5 1 000 100 000 EPS 

ST-LOUIS PINGTUNG C001 KC10 100 000 EPS 

ST-LOUIS TAIPEI C003 C141B 100 000 EPS 

ST-LOUIS TAIPEI C003 C5 1 000 100 000 

ST-LOUIS TAIPEI .C003 KC10 100 000 EPS 

ST-LOUIS TAIPEI .C004 C141B 100 000 EPS 

ST-LOUIS TAIPEI .CO 04 C5 100 000 

ST-LOUIS TAIPEI .C004 KC10 1 000 100 000 EPS 

ST-LOUIS TAIPEI .C005 C141B 100 000 EPS 

ST-LOUIS TAIPEI .C005 C5 1 000 100 000 

ST-LOUIS TAIPEI .C005 KC10 100 000 EPS 

BOSTON TAINAN .C007 C141B 100 000 EPS 

BOSTON TAINAN .C007 C5 1 000 100 000 EPS 

BOSTON TAINAN .C007 KC10 100 000 EPS 

BOSTON TAINAN .C008 C141B 100 000 EPS 

BOSTON TAINAN .C008 C5 100 000 EPS 

BOSTON TAINAN .C008 KC10 100 000 EPS 

BOSTON TAINAN .C009 C141B 100 000 

BOSTON TAINAN .C009 C5 100 000 EPS 

BOSTON TAINAN .C009 KC10 100 000 EPS 

NEW-YORK TAINAN .C006 C141B 1 000 100 000 

NEW-YORK TAINAN .C006 C5 100 000 

NEW-YORK TAINAN .C006 KC10 100 000 

NEW-YORK TAINAN .C007 C141B 100 000 

NEW-YORK TAINAN .C007 C5 100 000 

NEW-YORK TAINAN .C007 KC10 100 000 

NEW-YORK TAINAN -C008 C141B 1 000 100 000 EPS 

NEW-YORK TAINAN .C008 C5 100 000 

NEW-YORK TAINAN .C008 KC10 100 000 

SAN-FRAN PINGTUNG .C010 C141B 100 000 EPS 

SAN-FRAN PINGTUNG .C010 C5 100 000 

SAN-FRAN PINGTUNG .C010 KC10 100 000 EPS 

SAN-FRAN PINGTUNG .C011 C141B 100 000 

SAN-FRAN PINGTUNG .C011 C5 100 000 EPS 

SAN-FRAN PINGTUNG .con KC10 100 000 EPS 

SAN-FRAN PINGTUNG .C012 C141B 1 000 100 000 EPS 

SAN-FRAN PINGTUNG .C012 C5 100 000 

SAN-FRAN PINGTUNG .C012 KC10 100 000 

SAN-FRAN TAIPEI .C007 C141B 100 000 EPS 

SAN-FRAN TAIPEI .C007 .C5 100 000 EPS 

SAN-FRAN .TAIPEI .C007 .KC10 5 000 100 000 EPS 
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SAN-FRAN.TAIPEI  .C008.C141B 

SAN-FRAN.TAIPEI  .C008.C5 

SAN-FRAN.TAIPEI  .C008.KC10 

SAN-FRAN.TAIPEI  .C009.C141B 

SAN-FRAN.TAIPEI  .C009.C5 

SAN-FRAN.TAIPEI  .C009.KC10 

SAN-FRAN.TAIPEI  .C010.C141B 

SAN-FRAN.TAIPEI  .C010.C5 

SAN-FRAN.TAIPEI  .C010.KC10 

SAN-DIEG.PINGTUNG.C008.C141B 

SAN-DIEG.PINGTUNG.C008.C5 

SAN-DIEG.PINGTUNG.C008.KC10 

SAN-DIEG.PINGTUNG.C009.C141B 

SAN-DIEG.PINGTUNG.C009.C5 

SAN-DIEG.PINGTUNG.C009.KC10 

SAN-DIEG.PINGTUNG.C010.C141B 

SAN-DIEG.PINGTUNG.C010.C5 

SAN-DIEG.PINGTUNG.C010.KC10 

SAN-DIEG.PINGTUNG.C011.C141B 

SAN-DIEG.PINGTUNG.CO11.C5 

SAN-DIEG.PINGTUNG.C011.KC10 

000 

000 

000 

000 

000 

 VAR X 

1 .BULK.C001.C141B 

1 .BULK.C001.C5 
1 .BULK.C001.KC10 
1 .OVER.C001.C141B 

1 .OVER.C001.C5 
1 .OVER.C001.KC10 
1 .PAX .C001.C141B 

1 .PAX .C001.C5 
1 .PAX .C001.KC10 

2 .BULK.C001.C141B 

2 .BULK.C001.C5 
2 .BULK.C001.KC10 
2 .OVER.C001.C141B 

2 .OVER.C001.C5 
2 .OVER.C001.KC10 

2 .PAX .C001.C141B 

2 .PAX .C001.C5 

2 .PAX .C001.KC10 

3 .BULK.C001.C141B 

3 .BULK.C001.C5 
3 .BULK.C001.KC10 
3 .OVER.C001.C141B 

3 .OVER.C001.C5 

no. of v 

LOWER 

loaded with j of m 

LEVEL     UPPER 

+ INF 

+ INF 

242 +INF 

+ INF 

+ INF 

+ INF 

+ INF 

+ INF 

758 +INF 

+ INF 

+ INF 

274 +INF 

+ INF 

+ INF 

+ INF 

+ INF 

+ INF 

726 +INF 

+ INF 

+ INF 

+ INF 

+ INF 

620     +INF 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

100.000 

on day t 

MARGINAL 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 

EPS 



Implementation of MP Models    81 

3 .OVER.C001.KC10 + INF EPS 

3 .PAX .C001.C141B + INF 

3 .PAX .C001.C5 0 380 + INF 

3 .PAX .C001.KC10 ■ + INF EPS 

4 .BULK.C003.C141B + INF EPS 

4 .BULK.C003.C5 0 110 + INF 

4 .BULK.C003.KC10 + INF EPS 

4 .BULK.C004.C141B + INF EPS 

4 .BULK.C004.C5 + INF EPS 

4 .BULK.C004.KC10 + INF EPS 

4 .OVER.C003.C141B + INF EPS 

4 .OVER.C003.C5 0 662 + INF 

4 .OVER.C003.KC10 + INF EPS 

4 .OVER.C004.C141B + INF EPS 

4 .OVER.C004.C5 + INF EPS 

4 .OVER.C004.KC10 + INF EPS 

4 .PAX .C003.C141B + INF EPS 

4 .PAX .C003.C5 0 228 + INF 

4 .PAX .C003.KC10 + INF • 
4 .PAX .C004.C141B + INF EPS 

4 .PAX .C004.C5 + INF EPS 

4 .PAX .C004.KC10 + INF EPS 

5 .BULK.C004.C141B + INF 

5 .BULK.C004.C5 + INF 

5 .BULK.C004.KC10 0 786 + INF 

5 .BULK.C005.C141B + INF EPS 

5 .BULK.C005.C5 0 319 + INF 

5 .BULK.C005.KC10 + INF EPS 

5 .OVER.C004.C141B + INF EPS 

5 .OVER.C004.C5 + INF EPS 

5 .OVER.C004.KC10 + INF EPS 

5 .OVER.C005.C141B + INF EPS 

5 .OVER.C005.C5 0 681 + INF 

5 .OVER.C005.KC10 + INF EPS 

5 .PAX .C004.C141B + INF EPS 

5 .PAX .C004.C5 + INF EPS 

5 .PAX .C004.KC10 0 214 + INF 

5 .PAX .C005.C141B + INF EPS 

5 .PAX .C005.C5 + INF EPS 

5 .PAX .C005.KC10 + INF EPS 

6 .BULK.C007.C141B + INF EPS 

6 .BULK.C007.C5 0 302 + INF 

6 .BULK.C007.KC10 + INF 

6 .BULK.C008.C141B + INF 

6 .BULK.C008.C5 + INF EPS 

6 .BULK.C008.KC10 + INF 
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6 .BULK.C009.C141B + INF 

6 .BULK.C009.C5 + INF EPS 

6 .BULK.C009.KC10 + INF 

6 .OVER.C007.C141B + INF EPS 

6 .OVER.C007.C5 0 616 + INF 

6 .OVER.C007.KC10 + INF EPS 

6 .OVER.C008.C141B + INF EPS 

6 .OVER.C008.C5 + INF 

6 .OVER.C008.KC10 + INF EPS 

6 .OVER.C009.C141B + INF EPS 

6 .OVER.C009.C5 + INF 

6 .OVER.C009.KC10 + INF EPS 

6 .PAX .C007.C141B + INF 

6 .PAX .C007.C5 0 082 + INF 

6 .PAX .C007.KC10 + INF EPS 

6 .PAX .C008.C141B + INF EPS 

6 .PAX .C008.C5 + INF EPS 

6 .PAX .C008.KC10 + INF EPS 

6 .PAX .C009.C141B + INF EPS 

6 .PAX .C009.C5 + INF EPS 

6 .PAX .C009.KC10 + INF EPS 

7 .BULK.C006.C141B 1 000 + INF 

7 .BULK.C006.C5 + INF EPS 

7 .BULK.C006.KC10 + INF EPS 

7 .BULK.C007.C141B + INF EPS 

7 .BULK.CO07.C5 + INF EPS 

7 .BULK.C007.KC10 + INF EPS 

7 .BULK.C008.C141B 0 630 + INF 

7 .BULK.C008.C5 + INF EPS 

7 .BULK.C008.KC10 + INF EPS 

7 .OVER.C006.C141B + INF EPS 

7 .OVER.C006.C5 + INF • 
7 .OVER.C006.KC10 + INF 

7 

7 

.OVER.C007.C141B 

.OVER.C007.C5 

+ INF 

+ INF 

EPS 

7 .OVER.C007.KC10 + INF 

7 .OVER.C008.C141B 0 206 + INF 

7 .OVER.C008.C5 + INF 

7 .OVER.C008.KC10 + INF 

7 .PAX .C006.C141B + INF EPS 

7 .PAX .C006.C5 + INF EPS 

7 .PAX .C006.KC10 + INF EPS 

7 .PAX .C007.C141B + INF EPS 

7 .PAX .C007.C5 + INF EPS 

7 .PAX .C007.KC10 + INF EPS 

7 .PAX .C008.C141B 0 163 + INF 
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7 .PAX .C008.C5 +INF       EPS 

7 .PAX .C008.KC10 +INF       EPS 

8 .BULK.C007.C141B + INF 

8 .BULK.C007.C5 + INF 

8 .BULK.C007.KC10 5. 000 + INF 

8 .BULK.C008.C141B + INF 

8 .BULK.C008.C5 + INF 

8 .BULK.C008.KC10 + INF 

8 .BULK.C009.C141B + INF 

8 .BULK.C009.C5 0 948 + INF 

8 .BULK.C009.KC10 5 000 + INF 

8 .BULK.C010.C141B 1 000 + INF 

8 .BULK.C010.C5 +INF       EPS 

8 .BULK.C010.KC10 + INF 

8 .OVER.C007.C141B +INF       EPS 

8 .OVER.C007.C5 +INF       EPS 

8 .OVER.C007.KC10 + INF       EPS 

8 .OVER.C008.C141B +INF       EPS 

8 .OVER.C008.C5 +INF       EPS 

8 .OVER.C008.KC10 +INF       EPS 

8 .OVER.C009.C141B +INF       EPS 

8 .OVER.C009.C5 +INF       EPS 

8 .OVER.C009.KC10 + INF       EPS 

8 .OVER.C010.C141B +INF       EPS 

8 .OVER.C010.C5 + INF       EPS 

8 .OVER.C010.KC10 +INF       EPS 

8 .PAX .C007.C141B + INF       EPS 

8 .PAX .C007.C5 + INF       EPS 

8 .PAX .C007.KC10 +INF       EPS 

8 .PAX .C008.C141B +INF       EPS 

8 .PAX .C008.C5 +INF       EPS 

8 .PAX .C008.KC10 +INF       EPS 

8 .PAX .C009.C141B + INF       EPS 

8 .PAX .C009.C5 0 052 + INF 

8 .PAX .C009.KC10 +INF       EPS 

8 .PAX .C010.C141B +INF       EPS 

8 .PAX .C010.C5 + INF 

8 .PAX .C010.KC10 +INF       EPS 

9 .BULK.C008.C141B +INF       EPS 

9 .BULK.C008.C5 + INF 

9 .BULK.C008.KC10 + INF 

9 .BULK.C009.C141B + INF 

9 .BULK.C009.C5 + INF 

9 .BULK.C009.KC10 + INF 

9 .BULK.C010.C141B + INF 

9 .BULK.C010.C5 + INF 
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9 .BULK.C010.KC10 + INF 

9 .BULK.C011.C141B + INF EPS 

9 .BULK.C011.C5         .        0. 955 + INF 

9 .BULK.C011.KC10       .        5. 000 + INF 

9 .OVER.C008.C141B + INF EPS 

9 .OVER.C008.C5 + INF EPS 

9 .OVER.C008.KC10 + INF EPS 

9 .OVER.C009.C141B + INF EPS 

9 .OVER.C009.C5 + INF EPS 

9 .OVER.C009.KC10 + INF EPS 

9 .OVER.C010.C141B + INF EPS 

9 .OVER.C010.C5 + INF EPS 

9 .OVER.C010.KC10 + INF EPS 

9 .OVER.C011.C141B + INF EPS 

9 .OVER.C011.C5 + INF EPS 

9 .OVER.C011.KC10 + INF EPS 

9 .PAX .C008.C141B + INF EPS 

9 .PAX .C008.C5 + INF EPS 

9 .PAX .C008.KC10 + INF EPS 

9 .PAX .C009.C141B + INF EPS 

9 .PAX .C009.C5 + INF EPS 

9 .PAX .C009.KC10 + INF EPS 

9 .PAX .C010.C141B + INF EPS 

9 .PAX .C010.C5 + INF EPS 

9 .PAX .C010.KC10 + INF EPS 

9 .PAX .C011.C141B + INF EPS 

9 .PAX .C011.C5         .        0 045 + INF 

9 .PAX .C011.KC10 + INF EPS 

10.BULK.C010.C141B + INF EPS 

10.BULK.C010.C5 + INF EPS 

10.BULK.C010.KC10 + INF EPS 

10.BULK.C011.C141B + INF EPS 

10.BULK.C011.C5 + INF EPS 

10.BULK.C011.KC10 + INF EPS 

10.BULK.C012.C141B + INF EPS 

10.BULK.C012.C5 + INF EPS 

10.BULK.C012.KC10 + INF EPS 

10.OVER.C010.C141B + INF 

10.OVER.C010.C5 + INF EPS 

10.OVER.C010.KC10 + INF EPS 

10.OVER.C011.C141B + INF 

10.OVER.C011.C5 + INF EPS 

10.OVER.C011.KC10 + INF EPS 

10.OVER.C012.C141B      .        0 .932 + INF 

10.OVER.C012.C5 + INF EPS 

10.OVER.C012.KC10 + INF EPS 
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10 PAX .C010 C141B 

10 PAX .C010 C5 

10 PAX .C010 KC10 

10 PAX .con C141B 
10 PAX .con C5 
10 PAX .con KC10 
10 PAX .C012 .C141B 

10 PAX .C012 .C5 

10 .PAX .C012 .KC10 

-- -- VAR Y 

LOWER 

C141B 

C5 

KC10 

-- -- VAR Z 

Z cost 

+INF       EPS 

+ INF 

+ INF 

+ INF       EPS 

+ INF 

+ INF 

068     +INF 

+ INF 

+ INF 

number of type v lift assets to be acquired 

LEVEL     UPPER    MARGINAL 

100.000     1.000 

100.000     4.000 

4.000   100.000     2.000 

LOWER     LEVEL     UPPER    MARGINAL 

-INF      8.000     +INF 

cost to be minimized 

SAMPLE PROGRAMS FOR REALISTIC DATA AND ANALYSIS 

The next programs use the data described in Chapter Five and show exactly how the 
analysis was done on a relatively large data set. The first listing shows the data 
structures shared by all the variants of the model, and the rest of the listings show the 
GAMS version of the model equations for each of the models. A complete, working 
program can be formed by concatenating the data structures program with any of 
the equation model programs. The programs listed show the "min-cost", "min- 
lateness", "min-earlyness", and "min-prepo" models actually used to produce the 
results listed in Chapter Five. 

GAMS Program Data Structures 

set m movement requirements / 1 * 51 / ; 

set v lift assets / c5, cl41b, cl7, lrwc, lrwp, bulk, cont, roro / 

set j / bulk, over, out, pax, avn, whl, track, cont, other / ; 

table capacity(v,j) capacity of vehicle v for cargo type j 

bulk over out pax avn whl track cont other 

c5 75.6 75.6 75.6 0 0 0 0 75.6 75.6 

cl41b 26.0 26.0 0 0 0 0 0 0 26.0 

cl7 40.0 40.0 40.0 0 0 0 0 40.0 40.0 

lrwc 69.6 65.0 66.4 0 0 0 0 66.4 66.4 

lrwp 0 0 0 329 0 0 0 0 0 

bulk 15000 15000 15000 0 15000 0 0 0 15000 

cont 38000 38000 38000 0 0 0 0 38000 0 

roro 38000 38000 38000 0 0 38000 38000 0 0 
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able tons(m,j) 

bulk over out pax avn whl track cont other 

1 503 459 14 1631 0 0 0 503 473 

2 80 230 0 562 0 0 0 80 230 

3 131 126 0 389 0 0 0 131 126 

4 83 175 0 305 0 0 0 83 175 

5 44 23 0 0 0 0 0 44 23 

6 15 0 0 4 0 0 0 0 15 

7 36 68 0 38 0 0 0 0 104 

8 8 6 0 117 0 0 0 0 4 

9 0 0 0 243 0 0 0 0 0 

10 331 241 0 946 0 0 0 331 241 

11 15 0 0 4 0 0 0 0 15 

12 120 129 0 403 0 0 0 120 129 

13 264 186 52 865 0 0 0 264 238 

14 211 112 0 501 0 0 0 211 112 

15 143 50 0 265 0 0 0 143 50 

16 36 68 0 60 0 0 0 0 104 

17 8 6 0 117 0 0 0 0 14 

18 103 628 462 396 0 0 0 88 56 

19 1166 8880 3770 3618 0 0 0 1322 1066 

20 48 197 64 184 0 0 0 33 0 

21 1035 9521 1100 4737 0 0 0 1004 483 

22 61 600 156 421 0 0 0 77 23 

23 139 1296 528 448 0 0 0 136 53 

24 692 8272 2719 3137 0 0 0 1021 192 

25 0 15 0 10 0 0 0 0 0 

26 917 7601 2484 3528 0 0 0 934 252 

27 93 554 188 566 0 0 0 103 43 

28 546 4743 2306 1811 0 0 0 567 75 

29 17 231 39 138 0 0 0 29 5 

30 75 353 109 223 0 0 0 55 0 

31 15 82 122 43 0 0 0 13 0 

32 1020 8290 1825 4596 0 0 0 1030 340 

33 252 2613 1689 1063 0 0 0 291 133 

34 247 2270 123 1011 0 0 0 242 56 

35 0 0 0 0 122 927 0 0 0 

36 0 0 0 0 0 10253 1175 0 0 

37 0 0 0 0 0 276 0 0 0 

38 0 0 0 0 0 9477 692 0 0 

39 0 0 0 0 0 717 0 0 0 

40 0 0 0 0 0 1720 54 0 0 

41 0 0 0 0 0 8154 2316 0 0 

42 0 0 0 0 0 15 0 0 0 

43 0 0 0 0 20 9140 656 0 0 

44 0 0 0 0 0 667 22 0 0 

45 0 0 0 0 0 6373 580 0 0 
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46 0 0      0      0      0    253 0 0 0 

47 0 0      0      0      0    482 0 0 0 

48 0 0      0      0      0    206 0 0 0 

49 0 0      0      0      0   9257 508 0 0 

50 0 0      0      0    20   3586 524 0 0 

51 0 0      0      0    20   2322 0 0 0 

parameter L(m j,v) load factors; 

L (m, j,v) = (tons(m,j)/capacity(v,j))$(capacity(v, j)); 

parameter a(m availability of movement m 

/ 
1 14 

2 14 

3 14 

4 14 

5 15 

6 14 

7 16 

8 16 

9 16 

10 14 

11 14 

12 14 

13 14 

14 14 

15 14 

16 16 

17 16 

18 14 

19 14 

20 24 

21 24 

22 24 

23 24 

24 14 

25 24 

26 24 

27 24 

28 14 

29 14 

30 14 

31 24 

32 24 

33 24 

34 24 

35 14 

36 14 
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37 24 

38 24 

39 24 

40 24 

41 14 

42 24 

43 24 

44 24 

45 14 

46 14 

47 14 

48 24 

49 24 

50 24 

51 24 

/; 

parameter re ld(m) 

/ 
1 18 

2 19 

3 20 

4 21 

5. 30 

6 18 

7 18 

8 27 

9 30 

10 17 

11 18 

12 19 

13 20 

14 21 

15 25 

16 18 

17 23 

18 21 

19 24 

20 26 

21 27 

22 29 

23 30 

24 24 

25 26 

26 27 

27 29 

28 24 
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29 27 

30 29 

31 26 

32 27 

33 28 

34 29 

35 24 

36 24 

37 34 

38 34 

39 34 

40 34 

41 24 

42 34 

43 34 

44 34 

45 24 

46 24 

47 24 

48 34 

49 34 

50 34 

51 34 

/; 

set e of DRIGINs 

/ 
EAST 

GULF 
TATTT C T1 

/; 
set d of DESTINATIONS 

/ 
JAPAN 

SKORE 

/; 
parameter dest2(m,d) shows which DESTINATION m uses 

/ 
1 SKORE   = 1 

2 SKORE   = 1 

3 SKORE   = 1 

4 SKORE   = 1 

5 JAPAN   = 1 

6 JAPAN   = 1 

7 JAPAN   = 1 

8 JAPAN   = 1 

9 JAPAN   = 1 

10 SKORE   = 1 
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ll.SKORE = 1 

12.SKORE = 1 

13.SKORE = 1 

14.SKORE = 1 

15.SKORE = 1 

16.SKORE = 1 

17.SKORE = 1 

18.SKORE = 1 

19.SKORE = 1 

20.SKORE = 1 

21.SKORE = 1 

22.SKORE = 1 

23.SKORE = 1 

24.SKORE = 1 

25.SKORE = 1 

2 6.SKORE = 1 

27.SKORE = 1 

28.SKORE = 1 

29.SKORE = 1 

3 0.SKORE = 1 

31.SKORE = 1 

32.SKORE = 1 

33.SKORE = 1 

34.SKORE = 1 

3 5.SKORE = 1 

3 6.SKORE = 1 

37.SKORE = 1 

38.SKORE = 1 

3 9.SKORE = 1 

40.SKORE = 1 

41.SKORE = 1 

42.SKORE = 1 

43.SKORE = 1 

44.SKORE = 1 

45.SKORE = 1 

46.SKORE = 1 

47.SKORE = 1 

48.SKORE = 1 

49.SKORE = 1 

50.SKORE = 1 

51.SKORE = 1 

/ ; 

parameter origin (m,e) s 

/ 
1.EAST = 1 

2.EAST = 1 

3.EAST = 1 

shows which ORIGIN m uses 
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4.EAST = 1 

5.GULF = 1 

6.WEST = 1 

7.WEST = 1 

8.WEST = 1 

9.WEST = 1 

10.WEST = 1 

11.WEST = 1 

12.WEST = 1 

13.WEST = 1 

14.WEST = 1 

15.WEST = 1 

16.WEST = 1 

17.WEST = 1 

18.EAST = 1 

19.EAST = 1 

20.EAST = 1 

2 LEAST = 1 

22.EAST = 1 

23.EAST = 1 

24.GULF = 1 

2 5.GULF = 1 

2 6.GULF = 1 

27.GULF = 1 

28.WEST = 1 

29.WEST = 1 

30.WEST = 1 

31.WEST = 1 

32.WEST = 1 

33.WEST = 1 

34.WEST = 1 

3 5.EAST = 1 

36.EAST = 1 

37.'EAST = 1 

3 8.EAST = 1 

3 9.EAST = 1 

40.EAST = 1 

41.GULF = 1 

42.GULF = 1 

43.GULF = 1 

44.GULF = 1 

45.WEST = 1 

46.WEST = 1 

47.WEST = 1 

48.WEST = 1 

49.WEST = 1 

50.WEST = 1 
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51.WEST =   1 

/ ; 
parameter b(m,v) latest that m can go on v to meet rdd ; 

b(m,'c5')       = rdd(m); 

b(m,'cl41b') = rdd(m); 

b(m,'cl7  ') = rdd(m); 

b(m,'lrwc')   = rdd(m); 

b(m, 'lrwp')   = rdd(m); 

b(m,'bulk')   = rdd(m)-10; 

b(m,'cont')   = rdd(m)-10; 

b(m, 'roro')   = rdd(m)-10; 

set    t / n005, n004, n003, n002, nOOl, cOOO  * c040 / ; 

parameter tnum(t) number of day t; 

tnum(t) = ord(t) - 6; 

parameter inuse(e,d,t); 

inuse(e,d,t) = sum(m $ ((tnum(t) ge A(m) and tnum(t) le (rdd(m))) 

and origin(m,e) and dest2(m,d)), 1); 

set    h / n005, n004, n003, n002, nOOl, cOOO  * c040 / ; 

parameter hnum(h) number of day h; 

hnum(h) = ord(h) -6; 

parameter dollars(v) guesstimate cost of additional lift assets of type v 

/ 

c5       0.01 

cl41b 0.01 

cl7 500 

lrwc 30 

lrwp 0.01 

bulk 0.01 

cont 0.01 

roro 0.01 

/ ; 

parameter S(e,d,v) cycle time; 

S(e,d,'c5') = 2; 

S(e,d,'cl41b') = 2 

S(e,d,'cl7') = 2; 

S(e,d,'lrwc') = 2; 

S(e,d, 'lrwp') = 2 ; 

S(e,d,'bulk') = 20 

S(e,d,'cont') = 20 

S(e,d,'roro') = 20 

parameter n(v) numl Der of lift assets of type v at on hand 

/ 

c5 0 

cl41b 0 

cl7 0 

lrwc 0 

lrwp 0 
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bulk 0 

cont 0 

roro 0 

/   ; 

GAMS Program to Minimize Cost of New Transportation Assets 

variables 

U(e, d, t, v) no. of v loaded at ORIGIN e in t bound for DESTINATION d 

X(m, j , t, v) no. of v loaded with j of m on day t 

Y(v) number of type v lift assets to be acquired 

z cost to be minimized 

positive variables X, U, Y; 

*positive variable X; 

»integer variables U, Y; 

equations 

cost define objective function 

cost2 dummy constraint 

demand(m,j) every movement is shipped in its entirety 

supplyl(e,d,t,v) supply of shipping 

supply2(h,v) supply of shipping 

lrwc constraint on number of lrwcs 

lrwp constraint on number of lrwps 

cl41 constraint on number of cl41s 

c5 constraint on number of c5s 

bulk constraint on number of bulks 

cont constraint on number of conts 

roro constraint on number of roros; 

cost .. z =e= sum(v, dollars(v)*Y(v)) ; 

demand(m,j) $ (tons(m,j)).. sum( (v,t) $ 

(tnum(t) ge A(m) and tnum(t) le B(m,v) and L(m,j,v)), 

(1/L(m,j,v))*X(m,j,t,v) ) =e= 1 ; 

supplyl(e,d,t,v)$(inuse(e,d,t)) 

.. sum( (m,j)$ (origin(m,e) and dest2(m,d) and 

(tnum(t) ge A(m) and tnum(t) le B(m,v))), X(m,j,t,v) ) - U(e,d,t,v)  =1= 0 ; 

supply2(h,v) .. sum( (e,d,t) $ 

( (tnum(t) ge (hnum(h)-S(e,d,v))) and (tnum(t) le hnum(h)) 

*and inuse(e,d,t)), U(e,d,t,v) ) 

), U(e,d,t,v) ) 

- Y(v) =1= N(v) ; 

lrwc .. Y{'lrwc1) =1= 15; 

lrwp .. Y('lrwp') =1= 75; 

cl41 .. Y('cl41b') =1= 150; 

c5 .. Y('c5') =1= 100; 

bulk .. Y('bulk') =1=  60; 

cont .. Y('cont') =1=  40; 
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roro .. Y('roro') =1=  50; 

model smmlP / demand, supplyl, supply2, cost, lrwc, lrwp, cl41, c5, 

bulk, cont, roro /; 

option solprint=off, iterlim=100000, reslim=100000 ; 

solve smmlP using lp minimizing z ; 

display x.l, x.m, y.l, y.m, z.l, z.m; 

GAMS Program to Minimize "Lateness" Subject to Budget Constraints 

variables 

U(e, d, t, v) no. of v loaded at ORIGIN e in t bound for DESTINATION d 

X(m, j, t, v) no. of v loaded with j of m on day t 

Y(v) number of type v lift assets to be acquired 

W(m, j, t, v) no. of v loaded with j of m on day t 

z lateness to be minimized 

positive variables W, X, U, Y; 

*positive variable X; 

*integer variables U, Y; 

equations 

lateness 

cost define budget constraint 

demand(m,j) every movement is shipped in its entirety 

supplyl(e,d,t,v) supply of shipping 

supply2(h,v) supply of shipping 

lrwc constraint on number of lrwcs 

lrwp constraint on number of lrwps 

cl41 constraint on number of cl41s 

c5 constraint on number of c5s 

bulk constraint on number of bulks 

cont constraint on number of conts 

roro constraint on number of roros; 

lateness .. z =e= sum( (m,j,t,v) $ 

(tnum(t) ge (B(m,v)+1) and tnum(t) le (B(m,v)+9) and tnum(t) gt A(m)), 

(tnum(t)-B(m,v))*(capacity(v,j)*W(m,j,t,v))) ; 

cost .. sum(v, dollars(v)*Y(v)) =1= 5; 

demand(m,j) $ (tons(m,j)).. 

sum( (v,t) $ (tnum(t) ge A(m) and tnum(t) le B(m,v) and L(m,j,v)), 

(1/L(m,j,v))*X(m,j,t,v) ) + 

sum( (v,t) $ ( (tnum(t) ge (B(m,v)+D) and (tnum(t) le (B(m,v)+9)) and 

(tnum(t) gt A(m)) and 

L(m,j,v)), 

(1/L(m,j,v))*W(m,j,t,v) ) 

=e= 1 ; 

supplyl(e,d,t,v)$(inuse(e,d,t)) 

*supplyl(e,d,t,v) 
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.. sum( (m,j)$ (origin(m,e) and dest2(m,d) and 

(tnum(t) ge A(m) and tnum(t) le B(m,v)+9)), 

W(m,j,t,v) +  X(m,j,t,v) ) - U(e,d,t,v)  =1= 0 ; 

supply2(h,v) .. sum( (e,d,t) $ 

( (tnum(t) ge (hnum(h)-S(e,d,v))) and (tnum(t) le hnum(h)) 

and inuse(e,d,t)), U(e,d,t,v) ) 

*), U(e,d,t,v) ) 

Y(v) N(v) 

lrwc .. Y('lrwc') =1= 15; 

lrwp .. Y('lrwp') =1= 75; 

cl41 .. Y('cl41b') =1= 150 

c5 .. Y('c5') =1= 100; 

bulk .. Y('bulk') =1=  60 

cont .. Y('cont') =1=  40 

roro .. Y('roro') =1=  50 

model smmlP / lateness, demand, supplyl, supply2, cost,lrwc, 

lrwp, cl41, c5, bulk, cont, roro /; 

option solprint=off, iterlim=100000, reslim=100000 ; 

solve smmlP using lp minimizing z ; 

display x.l, w.l, y.l, z.l; 

Early GAMS Program to Minimize "Early" Shipments Subject to Budget 
Constraints 

variables 

U(e, d, t, v) no. of v loaded at ORIGIN e in t bound for DESTINATION d 

X(m, j , t, v) no. of v loaded with j of m on day t 

Y(v) number of type v lift assets to be acquired 

W(m, j, t, v) no. of v loaded with j of m on day t 

z earlynes to be minimized 

positive variables W, X, U, Y; 

*positive variable X; 

*integer variables U, Y; 

equations 

earlynes 

cost define budget constraint 

demand(m,j) every movement is shipped in its entirety 

supplyl(e,d,t,v) supply of shipping 

supply2(h,v) supply of shipping 

lrwc constraint on number of lrwcs 

lrwp constraint on number of lrwps 

cl41 constraint on number of cl41s 

c5 constraint on number of c5s 

bulk constraint on number of bulks 
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cont constraint on number of conts 

roro constraint on number of roros; 

earlynes .. z =e= sum( (m,j,t,v) $ 

(tnum(t) ge (A(m)-8) and tnum(t) le (A(m)-l)), 

(A(m)-tnum(t))*(capacity(v,j)*W(m,j,t,v))) ; 

cost .. sum(v, dollars(v)*Y(v)) =1= 50000 ; 

demand(m,j) $ (tons(m,j)).. 

sum( (v,t) $ (tnum(t) ge A(m) and tnum(t) le B(m,v) and L(m,j,v)), 

(1/Mm, j,v) )*X(m, j,t,v) ) + 

sum( (v,t) $ ( (tnum(t) ge (A(m)-8)) and (tnum(t) le (A(m)-l)) and 

(tnum(t) It B(m,v)) and 

L(m,j,v)), 

(1/L(m,j,v))*W(m,j,t,v) ) 

=e= 1 ; 

supply1(e,d,t,v)$(inuse(e,d,t)) 

*supplyl(e,d,t,v) 

.. sum( (m,j)$ (origin(m,e) and dest2(m,d) and 

(tnum(t) ge A(m)-8 and tnum(t) le B(m,v)) ), 

W(m,j,t,v) +  X(m,j,t,v) ) - U(e,d,t,v)  =1= 0 ; 

supply2(h,v) .. sum( (e,d,t) $ 

( (tnum(t) ge (hnum(h)-S(e,d,v))) and (tnum(t) lehnum(h)) 

and inuse(e,d,t)), U(e,d,t,v) ) 

*), U(e,d,t,v) ) 
- Y(V) =1= N(v) ; 

lrwc .. Y('lrwc') =1= 15; 

lrwp .. Y('lrwp') =1= 75; 

C141 .. Y('cl41b') =1= 150; 

c5 .. Y('c5') =1= 100; 

bulk .. Y('bulk') =1=  60; 

cont .. Y('cont') =1=  40; 

roro .. Y('roro') =1=  50; 

model smmlP / earlynes, demand, supplyl, supply2, cost,lrwc, 

lrwp, cl41, c5, bulk, cont, roro /; 

option solprint=off, iterlim=100000, reslim=100000 ; 

solve smmlP using lp minimizing z ; 

display x.l, w.l, y.l, z.l; 

GAMS Program to Minimize Cargo Prepositioned Subject to 
Budget Constraints 

variables 
U(e, d, t, v) no. of v loaded at ORIGIN e in t bound for DESTINATION d 

X(m, j, t, v) no. of v loaded with j of m on day t 

Y(v) number of type v lift assets to be acquired 

W(m, j, v) no. of v loaded with j of m on day t 

z prepo to be minimized 
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positive variables W, X, U, Y; 

*positive variable X; 

*integer variables U, Y; 

equations 

prepo 

cost define budget constraint 

demand(m,j) every movement is shipped in its entirety 

supplyl(e,d,t,v) supply of shipping 

supply2(h,v) supply of shipping 

lrwc constraint on number of lrwcs 

lrwp constraint on number of Irwps 

cl41 constraint on number of cl41s 

c5 constraint on number of c5s 

bulk constraint on number of bulks 

cont constraint on number of conts 

roro constraint on number of roros; 

prepo .. z =e= sum( (m,j,v), 

capacity(v,j)*W(m,j,v) ) ; 

cost .. sum(v, dollars(v)*Y(v)) =1= 5 ; 

demand(m,j) $ (tons(m,j)).. 

sum( (v,t) $ (tnum(t) ge A(m) and tnum(t) le B(m,v) and L(m,j,v)), 

(1/L(m,j,v))*X(m,j,t,v) ) + 

sum( (v) $ L(m,j,v), 

(1/L(m,j,v))*W(m,j,v) ) 

= e= 1 ; 

supplyl(e,d,t,v)$(inuse(e,d,t)) 

.. sum( (m,j)$ (origin(m,e) and dest2(m,d) and 

(tnum(t) ge A(m) and tnum(t) le B(m,v)) ), 

X(m,j,t,v) ) - U(e,d,t,v)  =1= 0 ; 

supply2(h,v) .. sum( (e,d,t) $ 

( (tnum(t) ge (hnum(h)-S(e,d,v))) and (tnum(t) le hnum(h)) 

and inuse(e,d,t)), U(e,d,t,v) ) 

- Y(v) =1= N(v) ; 

lrwc .. Y('lrwc') =1= 15; 

lrwp .. Y('lrwp') =1= 75; 

cl41 .. Y('cl41b') =1= 150; 

c5 .. Y('c5') =1= 100; 

bulk .. Y('bulk') =1=  60; 

cont .. Y('cont') =1=  40; 

roro .. Y('roro') =1=  50; 

model smmlP / prepo, demand, supplyl, supply2, cost,lrwc, 

lrwp, cl41, c5, bulk, cont, roro /; 

option solprint=off, iterlim=100000, reslim=100000 ; 

solve smmlP using lp minimizing z ; 

display x.l, w.l, y.l, z.l; 



Appendix B 

SENSITIVITY ANALYSIS 

The sensitivity analysis merits a more detailed discussion. Table 3.11 presents the 
shadow prices and allowable ranges for the 14 Equation 3.6 constraints in this exam- 
ple—ten movement requirements, four of them with two cargo types. Movements 
with shadow prices that are not zero indicate some potential for savings. Note, for 
example, that there would be no change in the optimal value of the objective func- 
tion in this relaxed solution if prepositioning or early arrival of movement require- 
ments 1 through 5 or 10 was achieved. In fact, they could be increased in size with- 
out affecting the value of the objective function; for example, the first movement 
could increase to 1.73 times its size before affecting the optimum. Actually, some re- 
duction in the objective function mightbe achieved for decreases beyond the allow- 
able range; for example, if more than 25 percent of the movement 5 personnel could 
be prepositioned, some savings might accrue. 

PREPOSITIONING 

Of far greater interest are movements 6 through 9, because their shadow prices sug- 
gest potential for savings. The largest payoff would appear to be movement 8; if 55 
percent of it (0.55 from the "Allowable Decrease" column of Table 3.11) could be 
prepositioned, then the objective function (from Table 3.6) would be decreased to 
7.42 - 7.663(0.55). Whether this decrease would translate into the saving of a lift as- 
set cannot be immediately ascertained, but the parametric analysis of the right-hand 
side of the constraint that describes this movement can provide a great deal of in- 
sight. 

Table B.l presents a portion of this parametric analysis for movement requirement 8. 
The first line describes the optimal solution: If all values are rounded to two or three 
decimal places, the right-hand side is equal to 1.00 (all the movement requirement 
must be shipped), the objective function is equal to 7.42, and the shadow price is 
-7.663. The second line shows the effect of prepositioning or early arrival of up to 
0.55 of the movement (so that between 0.45 and 1.00 must be shipped within the 
stated time window); if 0.055 of the 710 tons (approximately 35.5 tons) could be 
prepositioned, the objective function would be reduced to 

7.42- 7.663(0.055) = 7.00 
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Table B.l 

Parametric Analysis of Movement Requirement 8 

Variable 
Out 

Variable 
In 

Constraint 
Value 

Shadow 
Price 

Objective 
Value 

_   1.000 -7.66 7.42 

X(8,Bulk,9,KC-10) X(9, Bulk, 10, 
KC-10) 0.454 -7.66 3.24 

X(8, Bulk, 10, KC-10) U(NewYork, 
Tianan, 7, KC-10) 0.454 -7.66 3.24 

X(8, Bulk, 8, KC-10) X(6, Bulk, 7, C-5) 0.419 -7.65 2.97 

Slack X(10, Over, 12, 
KC-10) 0.417 -7.65 2.95 

Slack X(7, Bulk, 6, 
KC-10) 0.417 -7.65 2.95 

NOTE: Dashes indicate original value, no variable. 

However, this is not a real integer saving even though 7.00 is a feasible integer value 
of the objective function—the cost of three KC-10s and one C-141. 

To gain a saving in aircraft, the integer must be reduced to 6.00 (the cost of 3 KC-10s). 
The reduction in the objective function comes about by reducing the optimal num- 
ber of KC-lOs from 3.71 to 3.5 in the linear solution (see Table 3.6). Reducing the 710 
bulk tons of movement 8 by 0.185, or 131.35 bulk tons, reduces the objective function 
to 

7.42- 7.663(0.185) = 6.00 , 

the cost of three KC-10s. Note again that only KC-10s are being affected and that this 
solution would carry over to the integer case: If 131.35 of the 710 bulk tons of move- 
ment requirement 8 could be prepositioned, the remainder of this movement plus all 
the other nine movements could be delivered within their time windows, using only 
three KC-10s rather than the four required if no prepositioning was done. 

What if none of movement 8 is available for prepositioning but certain of the other 
movement requirements are? Clearly, if these movements have zero shadow prices, 
they are not candidates for prepositioning. Further, those with small shadow prices 
may also offer no real benefits; the bulk portion of movement 6, for example, even if 
totally prepositioned, would reduce the objective function by only 0.225, to 7.194, 
which would still require four KC-10s. The only other viable candidate for preposi- 
tioning is movement 9, but a parametric analysis would reveal that even if the entire 
movement were prepositioned, the objective function would not fall below 6.89 and 
four KC-lOs would still be required. 

In a more realistic, larger problem, a number of movements would have to be found 
whose prepositioning would result in lift asset acquisition savings. These sensitivity 
analyses can be performed using only one movement at a time. The simultaneous 
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prepositioning of more than one movement may not result in savings equal to the 
sum of the savings promised by the shadow prices. 

EARLY ARRIVAL 

This same kind of analysis can be used to examine early arrival rather than preposi- 
tioning. Suppose that 0.185 of movement 8, whose prepositioning could reduce the 
objective function to 6.00, is not prepositioned but could be at the POE a day or two 
early. Would this possibility also result in the saving of one lift asset? The answer is, 
It depends. Having this cargo available on a day when insufficient lift is available to 
handle it would not provide any benefit. 

Suppose that a portion of movement 8 was available two days earlier, on day 5. The 
constraints that determine the number of lift assets available on day 5 (movements 4 
and 5) indicate that there is sufficient slack (shadow price of zero) in the system to 
allow loading on day 5 and realize the same savings that prepositioning would bring. 
The constraints for day 7 show no slack (a shadow price of other than zero), hence 
availability on day 6 may not result in real savings, because the round-trip time of 
two days means the extra assets used on day 6 would not be available on day 7. 

As with prepositioning, the only meaningful candidates for early arrival are those 
movement requirements whose constraints show shadow prices other than zero. 
Chapter Five shows a more direct method for examining the benefits of earlier avail- 
ability. 
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